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1 Introduction

CASINO is a code for performing quantum Monte Carlo (QMC) electronic structure calculations for
finite and periodic systems. Its development was inspired by a Fortran77 development code (known
simply as ‘the QMC code’) written in the early 1990s in Cambridge by Richard Needs and Guna
Rajagopal, assisted by many helpful discussions with Matthew Foulkes. This was later extended by
Andrew Williamson up to 1995 and then by Paul Kent and Mike Towler up to 1998. Various different
versions of this were able to treat fcc solids, single atoms and the homogeneous electron gas. By
the late 1990s it was clear that a modern general code capable of treating arbitrary systems (e.g. at
least atoms, molecules, polymers, slabs, crystals, and electron phases) was required, not only for the
use of the Cambridge QMC group, but for public distribution. At that time, a user-friendly general
publically available code did not exist (at least for periodic systems), and it was felt to be a good
thing to create one to allow people around the world to join in the fun.

So beginning in 1999 a new Fortran90 code, CASINO, was gradually developed in the group of
Richard Needs largely by Mike Towler, considerably assisted from 2002 by tall Ph.D. student Neil
Drummond (some routines from the old code were retained, translated and reused, although most
were gradually replaced). The main aims of the new code were generality, speed, ease-of-use and
transferability over a wide range of computational hardware. It is hoped that these objectives have
been largely attained, but the code continues to be actively developed.

Over the years, additional contributions have been made by Andrew Porter, Randy Hood, Andrew
Williamson, Dario Alfè, Gavin Brown, Chris Pickard, Rene Gaudoin, Ben Wood, Zoltan Radnai,
Andrea Ma, Pablo Lopez Rios, Ryo Maezono, John Trail and possibly others, for which we are grateful.

Finally, note that users need to sign the relevant piece of paper (available from Mike Towler or
Richard Needs) before using the code, and that the following citation (quoted in full) is required in
any publication describing results obtained with CASINO:

R. J. Needs, M. D. Towler, N. D. Drummond and P. R. C. Kent, CASINO version 1.7 User Manual,
University of Cambridge, Cambridge (2004).

Further public information and resources are available at the CASINO web page:

www.tcm.phy.cam.ac.uk/∼mdt26/casino.html

The CASINO pseudopotential library and download facility can be found on the private CASINO
users page:

www.tcm.phy.cam.ac.uk/∼mdt26/casino users.html
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2 The quantum Monte Carlo method

The correlated motion of electrons plays a crucial role in the aggregation of atoms into molecules
and solids, in electronic transport properties and in many other important physical phenomena. Ab
initio electronic structure calculations in which the properties of such correlated electron systems are
computed from first principles are a vital tool in modern condensed matter physics and molecular
quantum chemistry. Currently the most popular way to include the effects of electron correlation
in these calculations is density functional theory. This method is in principle exact, in reality fast
and often very accurate, but does have a certain number of well-known limitations. In particular,
with only limited knowledge available concerning the exact mathematical form of the so-called
exchange-correlation functional, the accuracy of the approximate form of the theory is non-uniform
and non-universal, and there are important classes of materials for which it gives qualitatively wrong
answers.

An important and complementary alternative for situations where accuracy is paramount is the
quantum Monte Carlo (QMC) method, which has many attractive features for probing the electronic
structure of real systems. It is an explicitly many-body method applicable to both finite and periodic
systems which takes electron correlation into account from the outset. It gives consistent, highly
accurate results while at the same time exhibiting favourable scaling of computational cost with
system size. This is in sharp contrast to the accurate methods used in mainstream quantum chemistry
such as configuration interaction or coupled cluster theory which are impractical for anything other
than small molecules and cannot generally be applied to condensed matter problems.

The use of quantum Monte Carlo has been greatly hampered over the last two decades by a com-
bination of insufficient computer power and a lack of available, efficient QMC computer programs
general enough to treat a similar range of problems to regular DFT codes. Fast parallel computers
are now widespread, and you are now in possession of just such a computer program that is capable
of carrying out QMC calculations for a wide range of interesting chemical and physical problems on
a variety of computational hardware. CASINO has been designed to make the power of the quantum
Monte Carlo method available to everyone, and we hope you enjoy using it.
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3 Miscellaneous issues

3.1 Support

CASINO has documentation and examples etc. but it is a research code and learning how to use
it is a significant task. This is particularly the case if the user does not have relevant experience
such as familiarity with VMC and DMC calculations and knowledge of DFT/HF methods for atoms,
molecules and solids. We are finding that supporting users can take a large amount of our time and
so we are having to limit the number of such groups that we can work with directly. We are finding
that most people need quite a lot of help and the project turns into a collaboration, but of course we
cannot enter into too many projects of this type as our time is limited. We do have people visiting
here to learn about the codes and how to do calculations, and this seems to work well.

In general, you are welcome to have a copy of CASINO if you sign and adhere to our agreement, and
we can give you some support in using it, but please understand that this may well be rather limited
in extent.

Having noted the above feel free to mail Richard Needs (rn11 at cam.ac.uk) or Mike Towler (mdt26
at cam.ac.uk) with any questions you may have. For more general questions you can use our mailing
list (casino users at phy.cam.ac.uk) .

3.2 Legal agreements and being nice

We are making CASINO available to a number of groups now. We are not currently asking for
any payment for academic use of the code, but we ask users to sign an agreement concerning use
of CASINO. The practical upshot of this is that users may not redistribute the code, they may
not incorporate any part of it into any other program system, nor may they modify it in any way
whatsoever without prior agreement of the Cambridge group. Please read this agreement carefully
and abide by what it says. You may not use or even retain a copy of CASINO if you have not
signed this agreement. A copy of the agreement can be found in the CASINO distribution in file
CASINO/docs/consent form.ps.

New versions of CASINO are produced on a regular basis (nightly builds for the beta version). As a
courtesy to the authors it would also be appreciated if users refrain from publishing scientific articles
using recently introduced facilities in the code if the authors of those facilities have not yet published
their work (at least, without first checking with them). Thanks for your understanding on this point.

It would be greatly appreciated if you could forward a copy of any article published using the results
of CASINO calculations to us, both for our interest and so we can add references to the CASINO
web pages.

3.3 Getting the latest version of the code

Registered users can download recent versions of CASINO from our secure web site :
www.tcm.phy.cam.ac.uk/∼mdt26/casino users.html. It should ask you for a username and
a password. These are normally assigned to particular institutions - if you don’t have one then please
contact Mike Towler who will be pleased to help.

The site will normally contain the most recent ‘stable release’ and a ‘beta version’. The latter is
a nightly build released most evenings with the latest changes. Clearly it isn’t guaranteed not to
fall over and you use it at your own risk. To help you decide which version you need, a link to
the CASINO DIARY file is provided which contains a comprehensive list of all modifications to the code.

Users in the Cambridge TCM group who belong to the Unix group ‘casino’ may additionally copy the
latest source from the directory ∼casino/current beta.

3



4 Functionality of CASINO

The CASINO program is actively being developed and many improvements and revision are envisaged,
but in its present state its capabilities are as follows:

• Variational Monte Carlo (including variance minimization of wave functions).

• Diffusion Monte Carlo (branching DMC and pure DMC).

• Use of Slater-Jastrow wave functions where the Slater part may consist of multiple determinants
of spin orbitals.

• Trial wave functions expanded in Gaussian basis sets (s, sp, p, d, f or g functions centred on
atoms or elsewhere) produced by the following programs (using DFT, HF, or various multideter-
minant methods): CRYSTAL9X/03 [24] [25], GAUSSIAN9X/03 [26] [27] and TURBOMOLE.

• Trial wave functions expanded in plane waves generated from PWSCF [30], ABINIT [29], GP,
CASTEP [28] and k207.

• Trial wave functions expanded in blip functions generated by post-processing plane-wave DFT
solutions.

• Trial wave functions in spline functions generated by post-processing plane-wave DFT solutions.

• Numerical atomic calculations with the orbitals interpolated from a radial grid.

• Improved scaling with system size through use of Wannier orbitals and localized basis functions.

• Computation of excitation energies corresponding to either promotion or addition/subtraction
of electrons.

• Computation of distribution functions such as the pair correlation function and density matrices
(electron and electron-hole systems only for the moment).

• 2D/3D electron phases in fluid or crystal wave functions, with arbitrary cell shape/spin polar-
ization/density (including excited state capability). 2D layer separation between opposite spin
electrons possible. Pair correlation function.

• 2D/3D electron-hole phases with fluid/crystal/pairing wave functions with arbitrary cell
shape/spin polarization/density (including excited state capability). Variable electron-hole mass
ratio. 2D layer separation between holes and electrons possible. Pair correlation function(s).

• Calculation of electron-electron interactions using either Ewald and/or our ‘modified periodic
Coulomb interaction’ which is faster and has smaller Coulomb finite size effects.

• Parallelized using MPI—tested in parallel on Hitachi SR2201 and SR11000, Cray T3E, SGI
Origin 2000, SGI Altix, IBM SP3 and IBM Pseries, Fujitsu Primepower, Alpha servers and
SunFire Galaxy, Linux PC clusters, Opteron clusters.

• Also set up for workstation use on DEC Alphas, SGI Octane and O2, Linux PC with various
compilers. MPI libraries not required on single processor machines.

• Keyword input handled using highly flexible ESDF electronic structure data format.

• Self-documenting help system.
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5 Installation

Unpack the CASINO vxxx.tar.gz distribution in your home directory, then go to 5.1 or 5.2 depending
on whether your architecture is supported or not.

5.1 Supported architecture

This currently includes (at least):
Workstations: DEC Alpha, SGI Octane and O2, Linux PC (ifc, pgf90, nag, compaq, lahey lf95
compilers)
Parallel Machines: Hitachi SR2201, Cray T3E, SGI Origin 2000, SGI Altix, IBM SP3, IBM
P-series, Fujitsu Primepower, SunFire Galaxy, Alpha multiprocessors, Linux PC clusters, Linux PC
multiprocessors, Opteron clusters

See the file CASINO/ARCH for the definitive list of supported architectures with definitions and
library requirements.

The instructions below require you to set environment variables. The procedure for doing this depends
on what Unix shell you use. Roughly speaking, if you use the (t)csh shell, then environment variables
should be set in your .cshrc file using commands like :

setenv QMC_ARCH sun
setenv QMC_TMPDIR /temp/$user
set path = ($path $HOME/CASINO_bin_qmc/utils/$QMC_ARCH)

If you use the bash shell, then add something like the following to your .bashrc file.

export QMC_ARCH="sun"
export QMC_TMPDIR="/temp/$USER"
export PATH=$PATH:$HOME/CASINO/bin_qmc/utils/$QMC_ARCH

After modifying the appropriate file, you should type ’source /.cshrc’ or ’source /.bashrc’. (Make
sure these files are read automatically during the login procedure that you use - if not, include the
’source’ line above in your .login or .bash profile file.) If you use a shell other than these three, then
you’re on your own..!

Set the environment variable QMC ARCH to be machine type, where machine type is one of the
supported architectures listed in the CASINO/ARCH file. This variable identifies what kind of
computer you are running on - so that CASINO knows what Fortran compiler to use, what libraries
are required, how jobs are run, and so on. If you are not sure which one you should use, take a look
at the list in this file, and/or the files in the CASINO/src/zmakes/ directory.

2. Add /CASINO/bin qmc/utils/$QMC ARCH to your path (using shell-dependent commands -
see above for examples).

3 Type make in the ∼/CASINO/src directory.

4 Type make in the ∼/CASINO/utils directory.

5. When compilation has finished, type rehash (if using csh or tcsh). All required programs will now
be in your path.

6. That’s it.

If e.g. the default location of the MPI library doesn’t work on your machine, you can personalize
it by setting an environment variable QMC ID = [your machine name]. Create a file called
CASINO/src/zmakes/users/$QMC ARCH/$QMC ID.inc containing override definitions for the

5



library locations. If you send such files to Mike (mdt26 at cam.ac.uk) then they can be perma-
nently included in the CASINO distribution if you wish. The QMC ID variable need not be set if
you are happy with the defaults. Active QMC IDs are listed at the bottom of the CASINO/ARCH file.

Note that the MPI library is not required to compile CASINO on single-processor machines. No
other external libraries are required.

5.2 Unsupported architecture

1. Write a CASINO/src/zmakes/[machine name].inc file containing compiler name and appropriate
flags for optimized/debugged/profiled code using the existing include files as a model. Copy it
(with the evident modifications) into CASINO/utils/zmakes/[machine name].inc. If your ma-
chine uses non-standard library locations or compiler flags or whatever you may also create a
CASINO/src/zmakes/[machine type]/[machine name].inc file containing personalized settings which
can be accessed through the QMC ID environment variable (see note about this in ’Supported
architectures’ above.).

2. Now you need some run scripts to run the code.

If your machine is a workstation/multiprocessor PC/cluster which does not use a batch
queue system, then you can just use the standard runvmc, runvarmin and rundmc from
the CASINO/scripts/workstation directory. You will need to add a few lines to the
CASINO/utils/Makefile so that these scripts are copied from this directory if QMC ARCH is
set to the new machine type.

If your machine is a parallel machine using a batch queue system, then you will probably need to
adapt existing run scripts. Obviously you can use the ones in the origin/t3e/hitachi/ibm sp3 etc.
directories as models. Running CASINO without these scripts is possible but not really recommended,
since the scripts have been carefully tuned to check for most common errors, to run CASINO in as
efficient a way as possible, and to tidy up after it.

3. You may also need to do a little further hacking around in the CASINO/utils/Makefile in order to
get all the utilities working properly. Note that many of these utilities require you to be able run inter-
active jobs which may not be impossible on certain batch-based machines, so make sure the Makefile
doesn’t bother to compile and set them up. Have a look at the CASINO/utils/help/casinohelp script
too, to make sure it behaves appropriately with your new machine type.

4. Send 1, 2 and 3 to Mike Towler at mdt26 at cam.ac.uk

5. Go to supported architecture list above.

5.3 Further installation notes

• By default all Fortran90 files will be compiled with full optimization. If you want to compile
with debugging or profiling compiler options instead of the optimizing ones, or to compile a
separate ’development version’, then type make debug, make prof or make dev. The Makefile
will keep separate copies of all object files and binaries for the different compilation levels.

• Note that on a multi-machine environment like the Cambridge High Performance Computing
Centre where many different machines access the same filespace you can use the same CASINO
source distribution for all machines. The Makefile keeps separate compilation records for each
machine and source type (opt/debug/prof/dev)—thus you can compile the same source on
more than one different machine at the same time.
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6 How to use CASINO

6.1 Getting started : summary

You should first learn how to use CASINO using the examples provided. Example input files for
finite systems (atoms, molecules) and for systems with periodicity in one, two or three dimensions
(polymers, slabs and crystalline solids) plus various electron and electron-hole systems can be found in
the /CASINO/examples directory. If you have set up the code as described in the installation section,
you can run the code with the runvmc, rundmc and runvarmin scripts which will have been placed
in your path. Change the units and reblock the answers using the utility reblock. The behaviour of
the QMC calculation is determined by a list of keywords in the file input. To access the internal
CASINO help system which tells you about this, type casinohelp all to get a list of all keywords that
the program knows about, or casinohelp keyword for detailed help on a particular keyword. Create a
blank file containing the keyword input example and type runvmc—this will create a sample input
file containing all valid input keywords and their default values in the correct format.

6.2 Getting started : details

This section gives basic practical details for running QMC calculations with CASINO and is intended
for new users. It assumes you already know something about the theory of VMC, DMC and variance
minimization. If you don’t, then please see the standard references for general details about the
methods, and the Theoretical Background section in this manual for details about how the algorithms
are implemented in CASINO. Following the instructions in this section will not necessarily lead to
publication quality results, but should at least allow you to play with the code and get some feel for
how it works.

6.2.1 Trial wave functions and pseudopotentials

Unless you’re interested in electron and electron-hole phases in the absence of an external potential
(in which case you can start straight away) the first hurdle to doing research with CASINO is to
generate a trial wave function using, for example, a DFT or Hartree-Fock calculation (multide-
terminant quantum chemistry methods can also be used). This must be done using an external
program, which must in the past have been persuaded to write out the wave function in a format
that CASINO understands, either all by itself, or through the transformation of the standard
output of the program using a separate utility (which will probably be included in the directory
CASINO/utils/wfn converters). Note that ‘writing out the wave function’ basically means writing
out the geometry, the basis set, and the orbital coefficients.

The information defining the trial wave function generated by the external program lives in files
whose name depends on the basis set in which the orbitals in the determinantal part of the wave
function are expanded. They are called gwfn.data (Gaussians), pwfn.data (plane waves), bwfn.data
(blip functions), swfn.data (splines) or awfn.data (atomic orbitals given explicitly on a radial grid).
These files will often be referred to generically with the name xwfn.data. Choice of basis set has
been found to depend largely on personal prejudice, though some consideration should be given to
issues of computational efficiency.

Gaussian and plane-wave functions are generated directly. Blip and spline wave functions are
generated by post-processing a plane-wave pwfn.data file using a CASINO utility (this is desirable
since plane waves are the absolute worst basis set you can choose for QMC - every basis function
contributes at every point in space - adding a factor of N to the scaling with system size). Splines
and blips are essentially the same thing written by two different groups. However, splines have now
been flagged as obsolescent and users of this functionality should move over to using blip functions;
the splines will be removed in a future version of CASINO.

To make the CASINO calculation scale independently of system size (energy per atom properties) or
quadratically (energy per cell properties) then the delocalized orbitals generated by most DFT/HF
programs need to undergo a unitary transformation to localized (Wannier) form. This can be
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done (for plane waves orbitals only at the moment) either by using the CASINO xwannier utility
(splines) or localizer utility (blips). The orbitals should then be re-expanded in splines (using the
generate spline utility), or blips (using the blipl utility).

Generating trial wave functions currently requires you to have access to one of the following codes.
This list may increase in the future - contact Mike Towler if you want your code to be supported.

Gaussian basis sets:

CRYSTAL95/98/03 : www.tcm.phy.cam.ac.uk/∼mdt26/crystal.html and links from there.

GAUSSIAN94/98/03 : www.gaussian.com

TURBOMOLE : www.chemie.uni-karlsruhe.de/PC/TheoChem/turbomole/intro.en.html.

Plane wave basis sets:

ABINIT : www.abinit.org. See reference [29]. Contact Mike Towler - mdt26 at cam.ac.uk - to
discuss the current status of the interface.

CASTEP : The modern CASTEP [28] is an entirely new Fortran90 version of the venerable
Cambridge plane-wave program which it is designed to replace. It is distributed by Accelrys -
see www.accelrys.com/mstudio/castep.html. Mail Chris Pickard (cjp20@phy.cam.ac.uk) to discuss
CASTEP and how to get hold of a copy.

k207 : A basic plane-wave program apparently only used by Richard Needs.

GP : If you don’t work at Lawrence Livermore you’re not allowed to use this, as it is a Government
Secret. If you do, then obviously you already know about it.

PWSCF : www.pwscf.org. See reference [30]

Atoms using a radial grid:

TCM atomic code : mail Richard Needs rn11 at cam.ac.uk

Pseudopotentials

CASINO is capable of running all-electron calculations, where core and valence electrons are explicitly
included in the simulation, or pseudopotential calculations, where the core electrons are replaced
by an effective potential. The latter is normally advantageous since the computer time required
for all-electron calculations scales rather badly with atomic number Z; this scaling is improved by
using pseudopotentials. However, recent improvements to the algorithms used by CASINO mean
that all-electron calculations may be performed for systems containing much heavier atoms than is
normally believed to be sensible (test calculations up to Z=54 have been done here in Cambridge).

CASINO reads pseudopotential data from a file called xx pp.data where xx is the chemical symbol
of the element in lower case letters. The file contains a logarithmic radial grid and the values of
the different angular momentum components of the pseudopotential at each grid point. A library of
pseuopotentials suitable for use with CASINO is available at :

www.tcm.phy.cam.ac.uk/∼mdt26/casino users.html

An important point is that exactly the same pseudopotential should be used in the DFT/HF
calculation that generates the trial wave function and in CASINO. Other programs do not in
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general understand the CASINO pseudopotential format, and so the information must somehow be
transformed so that they do.

For programs using Gaussian basis sets such as GAUSSIAN9X and CRYSTAL, the pseudopotential
must be reexpanded in Gaussian functions times powers of r. If you are using the Cambridge
pseudopotentials, these expansions (in formats suitable for these two programs) are included in the
on-line library. If you are using some other pseudopotential, then there is a CASINO utility - ppfit -
which can be persuaded to do the expansion for you. There is an additional utility - ptm - which can
manipulate pseudopotential files on grids and their Gaussian expansions in various useful ways.

As for plane wave programs, CASTEP understands the CASINO grid format and can read such
files directly. Other plane wave programs require conversion utilities, which may be included in the
CASINO/utils/pseudo converters directory.

For atomic calculations on radial grids, awfn.data files generated with the Cambridge pseudopoten-
tials are available in the on-line library.

6.2.2 Trial wave functions : emergencies

If you don’t have access to any of these codes and have a specific system in mind, then Mike Towler
is known for being able to generate trial wave functions in record time, on payment of a suitable fee
(just to get you started he likes, in no particular order: bright shiny things, books about romance,
yummy things to eat, poems, authorship on papers for which he hasn’t really done any work, cute
cuddly toys especially bears, and money).

6.2.3 Input file

Having prepared a trial wave function file and (perhaps) a pseudopotential file, you need to tell
CASINO exactly what to do with them. CASINO takes its instructions from a file called input which
contains a flexible list of keywords which control the behaviour of the calculation, switch on and off
various options, and so on. Take a moment to examine the various input files in CASINO/examples/
to get a feel for what they look like.

A complete list of input keywords, together with their definitions, is contained in section 7.1. Further
details, including default values, may be found by using the casinohelp utility. This tends to be more
up to date than the manual, since it interrogates CASINO directly. Type casinohelp all to get a list
of all keywords that CASINO knows about, or casinohelp keyword for detailed help on a particular
keyword. Type casinohelp search text to search for the string text in all the keyword descriptions.
Create a blank file containing the keyword input example and type runvmc—this will create a
sample input file containing all valid input keywords and their default values in the correct format.

Although there are many keywords, the beginning user can play around by changing only a few of
them. Here’s a (very) rough guide. Advice on good values to use will be given in the subsequent
sections explaining how to do VMC, DMC and variance minimization calculations.

General (system dependent) keywords you should always change (in addition to the title given in the
input file).

neu/ned : number of electrons of up and down spin
isperiodic : whether the system is periodic or not
npcells : number of primitive cells making up the simulation cell (not required for finite systems)

Important VMC keywords :

nequil : number of Metropolis equilibration steps
nmove : number of VMC moves
dtvmc : VMC time step
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corper : VMC correlation period

Important DMC keywords :

nmove : number of VMC moves to perform in the config generation step
nwrcon : number of configs per node to generate in the config generation step
nconfig : number of configs per node to use in DMC.
nmove dmc equil : number of moves to use in DMC equilibration.
nblock dmc equil : number of blocks to use in DMC equilibration.
nmove dmc stats : number of moves to use in DMC statistics accumulation.
nblock dmc stats : number of moves to use in DMC stats accumulation.
dtdmc : DMC time step

Important variance minimization keywords :

nmove : number of VMC moves to perform in the config generation step
nwrcon : number of configs per node to generate in the config generation step
corper : VMC correlation period

6.2.4 Jastrow factor file

If you run a CASINO VMC calculation using a trial wave function consisting only of a single
determinant of orbitals, then the result will be the Hartree-Fock energy. If the orbitals were generated
using a Hartree-Fock calculation, then the VMC-HF energy should agree with the HF energy from
the other code. This is a good check that everything is being done correctly. Obviously if the
determinant is made up of Kohn-Sham orbitals from a DFT calculation, then the energies will not
agree since the DFT program adds an exchange-correlation energy deduced from the self-consistent
density.

The full Slater-Jastrow trial function normally used in QMC requires the determinantal part of the
wave function stored in xwfn.data to be multiplied by a separate ‘Jastrow factor’ which defines the
functional form of explicit interparticle correlations. In a typical VMC calculation, one might recover
60-80 per cent of the correlation energy in this way. This is not really enough to be generally useful,
and in practice the main use of VMC is to prepare an accurate trial wave function given as input to
a diffusion Monte Carlo (DMC) calculation. The DMC energy does not in principle depend on the
Jastrow factor since it is positive definite and the DMC energy depends only on the nodal surface
(the set of points in configuration space where the many-electron wave function is zero) . However,
it makes the calculation vastly more efficient, and in general Jastrow factors should always be used.

The Jastrow factor is stored in a file called jastrow.data. Again, you should look at the examples to
see what these look like. The various parameters in the files are defined in section 7.2. The adjustable
parameters in the file must be optimized for a specific system, and this is the purpose of the variance
minimization procedure.

6.2.5 Other files

If for a two- or three-dimensionally periodic system you want to use the modified periodic Coulomb
(MPC) interaction to calculate the electron-electron energies instead of (or as well as) the standard
Ewald interaction, then you need to generate two more files for the given geometry before you start
doing VMC/DMC calculations. These are eepot.data (containing the Fourier transform of the
1/r interaction, and density.data (containing the Fourier transform of the charge density). These
should be prepared for a given trial wave function and geometry by setting the input keyword irun
to 5 and 6 respectively, and typing runvmc.

One might consider using the MPC interaction because CASINO can evaluate it much more quickly
than the Ewald interaction, and also because it gives rise to smaller finite size effects. More details
are given in section 10.20.4.
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6.2.6 How to do a VMC calculation

Let’s begin by calculating the Hartree-Fock energy of a hydrogen atom. Change directory to
CASINO/examples/atom/hydrogen. You will see a gwfn.data file generated by a GAUSSIAN94
calculation (see the bottom of gwfn.data for the GAUSSIAN output) and a CASINO input file. No
pseudopotential file is supplied, so CASINO will assume you wish to do an all-electron calculation.
No jastrow.data file is supplied, because the correlation energy in a one-electron atom (zero!) is
not difficult to calculate without one.

Look in the input file. You will see that neu and ned have been given the correct values (one
spin-up electron present), isperiodic is false, and as this is a finite system the npcells block is not
required. It is not necessary to equilibrate the electron distribution since there is only one electron,
but nequil is set to 1000 to remind you that this should normally be done. The nmove parameter
is set to 100000. The corper parameter is set to 3 to reduce serial correlation.

Type runvmc. Three files out, vmc.hist and vmc.posout should be produced. First type ve. This is
a quick way to pull the VMC result out of the output file. It says :

Total energy : -0.500009481495 +/- 0.000046640057 Time : 2.9000 seconds

Note that because of the stochastic nature of the method, the energy has an associated error bar
(users of DFT etc. may find this disconcerting!). The true Hartree-Fock energy of the hydrogen atom
is exactly -0.5 a.u., so we have seemingly correctly performed out first VMC calculation!

Next look in the file out. We see a complete report of the calculation, and at the end we see the total
energy and its components. Just before the total energy, we see the ‘acceptance ratio’. This should
be around 50%. If it isn’t, then you should play with the VMC timestep dtvmc (either manually, or
by activating the opt dtvmc flag with nequil set to at least 500 whereupon the timestep will be
optimized automatically). If the acceptance ratio is very large, then the electrons are only attempting
to move very short distances at each step of the random walk. They are thus likely to be bumbling
about in one corner of the configuration of space and the serial correlation is likely to be large -
increase dtvmc to prevent this. If the acceptance ratio is small, then the electrons are attempting
very large jumps which are likely to be to regions of lower probability - and are thus likely to be
rejected by the Metropolis algorithm. Thus the electrons don’t move very much, and again the serial
correlation is large. Reduce dtvmc to prevent this.

Next look at the file vmc.hist (see section 7.9). This contains mainly energy data produced at
each step of the random walk (you can average over n successive steps using the nvmcave keyword
to prevent this file getting too large). The vmc.hist file contains all the information necessary to
perform a statistical analysis of the data.

If you want an accurate estimate of the error bar (you should!) then you must analyze the data in
vmc.hist using the utility reblock which analyzes the serial correlation (this utility will also let you
change the units of the answer). Type reblock in the directory containing the vmc.hist file. It will
first ask you what units you want. Then it will print out a reblocking analysis (see section 10.22).
The error bar will generally be (too) small for small values of the block length, and then should
hopefully go up to a roughly constant value for higher block lengths, and for very high block lengths
it will oscillate as the error bar on the error bar is very high. This constant value in the middle is
the accurate error bar you want. Note that in general VMC calculations will reach this plateau more
quickly than DMC calculations since they generally use a much larger time step and there is thus
less serial correlation.

A file reblock.plot is normally produced as part of the output of the reblock procedure. If
you have the programs xmgr or xmgrace set up on your system, then you can visualize the
results of reblock by typing plot reblock - you should be able to see a ‘plateau’ in the variance
versus block length curve like in the figure below. Note that xmgrace is a very useful thing
to have and it is used by various CASINO utilities. If you don’t have it set up on your system
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then you can download it for free from the following website : plasma-gate.weizmann.ac.il/Grace/
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The file vmc.posout contains the final positions of the electrons and the current state of the random
number generator so that the VMC run may be continued if desired. For example, if the error
bar is still too large after a certain number of moves then you can make it smaller by running the
simulation for longer. To do this, set the input keyword inew to 0, and rename the vmc.posout file
to vmc.posin (in fact the runmvc script will normally ask if it can do this for you) then run the
calculation for another nmove moves. All the extra data will be put onto the end of vmc.hist and
the error bar from the reblocking analysis will be smaller and can in principle be made as small as
desired.

Finally, go and find a system with more than one electron and a Jastrow factor such as the beryllium
dimer in molecules/be2 in the examples directory. Experiment with switching irun between 1
(VMC-HF) and 2 (VMC with Jastrow) and see the energy and error bar lowering effect of the Jastrow
factor.

without Jastrow :

Total energy : -29.102495953655 +/- 0.012473252263 Time : 9.3100 seconds

with Jastrow :

Total energy : -29.221776570372 +/- 0.002571501258 Time : 12.2700 seconds

After any CASINO calculation, you can normally delete all the output that CASINO produces and
return the directory back to the state it was in at the start of the calculation by typing clearup.

6.2.7 How to do a variance minimization calculation

[NOTE : there is now a new method of optimization used in CASINO for linear parameters which is
about thirty times faster than the old one. It is not yet documented in this introductory section - but
see section 10.24.]

The values for the parameters in the Jastrow factor used in the last part of the previous section
(and other adjustable parameters such as coefficients in a multideterminant expansion) are optimized
through a variance minimization calculation. This is probably the most difficult part of QMC for
beginners, and perseverance will help. The user might first like to take a look at section 10.23, which
contains a detailed summary of the theory and best practice. Here we simply summarize.
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We wish to minimize the variance, the value of which is given by the first integral expression in
section 10.23. This integral is approximated by summing over a fixed set of ‘configurations’ (i.e. values
of the vector R giving the positions of all the electrons, and associated energies). These configurations
must clearly be distributed according to the square of the trial wave function, and the first part of a
variance minimization calculation is to generate them. This is done through an ordinary VMC run
with the keyword irun set to 2, and nwrcon set to the number of configurations to generate (clearly,
nmove must be greater than or equal to nwrcon - you might want it to be greater if you need a
longer run to get the error bar acceptable - this is useful for judging the success of an optimization at
each stage.). Also corper should be set to a high value (≥ 10) in order that the configurations are
completely uncorrelated. The configs generated are written to a file called config.in. These config-
urations are then read and fed into the variance minimizer through a CASINO run with irun set to
4. The optimizer then adjusts the value of the parameters in such a way that the variance is minimized.

At this stage, the configurations are distributed according to the original unoptimized wave function.
Thus it is often a good idea to recalculate the configurations using the new optimized wave function
to generate a new config.in and then perform the minimization again. This iterated procedure
can typically be carried on as long as desired, but doing more than two or three such iterations is
normally of little benefit.

The whole variance minimization procedure is actually automated by the runvarmin script, so the
two main things to worry about are ‘how many configurations to use?’ and ‘how many parameters
to include in the Jastrow factor?’. Good advice about this is given in section 10.23. Basically you
should use as many configurations as possible (i.e. greater than 10000 in general) remembering that
nwrcon refers to the number of configs per node. So if you have a ten-node parallel computer, then
you can use 10000 configurations by setting nwrcon to 1000. Conversely, you should use as few
parameters as you can get away with. This might be surprisingly few. Also, don’t forget to make
sure that the config-generating run has equilibrated before you start to write out configurations (i.e.
nequil should be suitable high - i.e. at least 1000 and probably more). Use the plot vmc energy
utility and xmgrace to check this visually.

The parameters in the Jastrow factor (see section 7.2 are of multiple types (the u term, the χ term
and the f term together with their associated cutoffs are the ones normally varied).

If the non-linear cutoff parameters are not being optimized, it is possible to greatly accelerate the
optimization process by turning on ‘linear mode’. This is done by setting the vm mode keyword to
‘linear’. This is expensive in memory however, and if this is a problem, or if the cutoff parameters
are to be included in the optimization, then vm mode should be set to ‘direct’ [NOTE : NOT
IMPLEMENTED FOR NEW JASTROW FACTOR - ONLY FOR THE OLD jasfun.data FORM
(MDT, 6.2004)..]

So let’s play. To see a particular example, go and look in examples/electron phases/3D fluid. This
is a homogeneous electron gas calculation with rs = 1 and 54 electrons per cell. Temporarily remove
the old Jastrow factor and copy examples/generic/new jastrow/jastrow.data blank u chi to
this directory (rename it to jastrow.data). The variable parameters are not given explicitly in this
example file, so CASINO assumes they are all zero and generates the initial configurations from the
Hartree-Fock wave function.

Edit the blank jasfun.data file. First change the title from ‘Insert title here’ to ’Homogeneous
electron gas (r s=1.0)’. Then delete all the lines from ’START CHI TERM’ to ‘END CHI TERM’ (we
have just deleted the atom-centred χ parameters, which is sensible because we don’t have any atoms
in a homogeneous electron gas). For this first example, we don’t want to optimize the non-linear
cutoff parameter, because it can take a long time to optimize so let’s just accept the default. To
do this, go to the point after the line where it says ‘Cutoff ; Optimizable (0=NO; 1=YES)’, set the
Optimizable flag to 0. How many parameters do we want to use? Not many, since we’re just playing,
so where it says ‘Expansion order’ set the value to 4.
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Now edit the input file. Let’s do 1000 configurations (nmove = nwrcon = 1000 (Note : this is in
general not enough - you should normally have at least 10000 - but we’re just playing). Let’s use
corper= 10 to reduce serial correlation. Make these changes now.

Now type runvarmin -n 2 -v. The -n flag means ‘do two iterations of the config generation/optimization
cycle’ ; the -v flag means ’when you’ve finished these two iteration, do a final VMC calculation with
the optimized Jastrow factor so we can check that it really does lower the variance’ (sometimes
it doesn’t!). (Note : if you just type runvarmin then the default on workstations is equivalent to
runvarmin -n 3 -v).

The runvarmin script will create a directory io in which all the input and output files from the
different stages of the calculation will be placed (with a numeric suffix indicating which iteration
of config generation/optimization they are associated with). The most important things to look
at are vmc.out.1, vmc.out.2 and vmc.out.3. These are the VMC output files with, respectively,
the unoptimized Jastrow factor, the optimized Jastrow factor after the first iteration, and the final
optimized Jastrow factor (obviously there will be even more of these if you increase the argument to
the -n flag). If you type ve vmc.out.* etc.. then you can quite clearly see whether the optimization
has worked at each stage. Be careful! It won’t always work, and you should choose the best of
the Jastrow factors from the different iterations (from jasfun.out.1, jasfun.out.2 etc.. in the io
directory). In this case we see :

File vmc.out.1:
Total energy : 0.643382740589 +/- 0.002557624213 Time : 13.8200 seconds
File vmc.out.2:
Total energy : 0.613263097995 +/- 0.001254910540 Time : 21.1500 seconds
File vmc.out.3:
Total energy : 0.611320944695 +/- 0.001157863567 Time : 20.9800 seconds

We see that optimizing the parameters in this way lowers the error bar and total energy significantly,
and also that most of the improvement is in the first iteration. One could try additional things, such
as optimizing the cutoff, or using more parameters, or having different functional forms between
different spin types to optimize the Jastrow still further. Feel free to try this.

Attempting to do this more carefully (for me) gave :

HF 0.644241947395 +/- 0.000416713194
VMC 0.601693183856 +/- 0.000110549234
DMC 0.599042511676 +/- 0.000185847226

where it can be seen that VMC gives around 94% of the correlation energy, if we assume the DMC
result is the correct answer.

If we were optimizing a real system with atoms, then we would have included the atom-centred
electron-nucleus χ term (one for each type of atom), and possibly the electron-electron-nucleus f
term (again, one for each atom type). There are two types of additional term, p and q, but these are
rarely used and then only for periodic systems.

6.2.8 How to do a DMC calculation

Diffusion Monte Carlo calculations are the main point of doing QMC. They are generally ex-
tremely accurate - comparable or better than the best quantum chemistry correlated wave function
techniques - and yet remain applicable to very large systems. However, they require an accu-
rate trial wave function to be efficient. This is normally taken to be a VMC Slater-Jastrow wave
function with the parameters in the Jastrow factor optimized with a variance minimization procedure.
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So we begin by assuming we have an input file, an xwfn.data file containing the determinantal part
of the wave function, and an optimized jastrow.data file containing the Jastrow factor. A DMC
calculation then consists of three basic steps :

• VMC config generation

• DMC equilibration

• DMC statistics accumulation

The wave function in DMC is not represented in terms of a basis set, but by the time-dependent
distribution in configuration space of a set of configurations (or ‘walkers’). The shape of the
many-electron wave function in configuration space is built up by killing or duplicating individual
walkers according to certain rules, and thus the population of walkers fluctuates.

The first step in DMC then is to generate these configurations in their initial distribution (i.e. accord-
ing to the VMC trial wave function). This is done through a VMC calculation in exactly the same way
as we generated configurations for variance minimization in the previous section. Therefore one should
again set nwrcon to be the desired number of configs/node, and nmove to be ≥ nwrcon. (Setting
the correlation period corper to a higher value than in VMC is less important than in variance
minimization, as the DMC configs are time dependent). Note - this is a common point of confusion -
that the irun flag should be set to 2 (VMC with Jastrow) at the start of a DMC calculation not, as
might be thought, to 3 (DMC). When it is required to actually carry out the DMC part of the calcula-
tion after the configs have been generated, the rundmc script will automatically flick irun from 2 to 3.

An appropriate number of configs to use for DMC might be 640 (10 configs per node on a 64-node
parallel machine) or more. You can usually get away with using 200 configs on a single-processor
workstation for small systems - this will clearly start getting too expensive for a single workstation
quite quickly as you increase the system size. Parallel machines are in general a good thing.

Following config generation, the distribution of walkers is then allowed to propagate in imaginary
time according to the usual DMC rules. During a certain period of equilibration, the distribution
will change until the walkers are distributed according to the ground-state wave function of the
system, subject to the constraint that the wave function has the same nodes as the VMC trial
function that we started with. This part of the process is called ‘DMC equilibration’. The best
estimate of the energy will fall from the initial VMC value to around the correct ground state
energy during this process. After equilibration, the best estimate of the energy will be roughly
correct, and we must now propagate for a long period of imaginary time to accumulate enough energy
data to estimate the DMC energy with a low enough error bar. This is the statistics accumulation part.

During its operation, the rundmc script creates a directory called io containing all the input, out
and config.in files from the various stages of the calculation renamed according to an obvious
scheme (e.g. out congen. out equil and out stats). The important files (left in the original
working directory) are dmc.hist and dmc.hist2 which contain energy and other data as a function
of move number (see sections 7.10 for precise definitions of what they contain - note that dmc.hist
contains the most important data and dmc.hist2 the less important).

The progress of a DMC simulation is easily visualized by means of the utility graphit, which
reads the dmc.hist file and calls the plotting programs xmgr or xmgrace to show you the re-
sulting pretty picture. This requires you to have xmgr or xmgrace set up on your machine - see
plasma-gate.weizmann.ac.il/Grace/ if you haven’t. Typing graphit will produce something like
this :
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This picture shows the results of the simulation of an antiferromagnetic NiO crystal with 10 configs
per node on 128 nodes of a parallel computer. The upper panel shows how the population fluctuates
as the simulation progresses. There is a feedback process in operation to limit the population
fluctuations so this should just oscillate around the total initial number of configurations that
we chose (1280 in this case). If you were smart and printed this manual out in colour, then
in the bottom panel, you will see a red line, a green line, and a wobbly black line. The black
line is the instantaneous value of the local energy (the thing which gets averaged over), the red
line is the reference energy ET which is adjusted to control the feedback process that keeps the
population in check; the green line is the best estimate of the DMC energy as the simulation progresses.

You should note that in the picture above, the best estimate of the energy falls from its initial
value from the VMC config generation run to a much lower constant value (around -55.72 a.u.) as
the wave function evolves to the ground state. You should look at what point the energy becomes
roughly constant i.e. at around 500 moves in this case. This splits the graph quite neatly into
an equilibration phase and a statistics accumulation phase. When we average energies to produce
the final energy and error bar, we should only include those moves between 500 and the end of the run.

To see DMC in action, go to examples/molecules/h2/RHF/dmc and let’s calculate the DMC energy
of a hydrogen molecule. The input files should already be set up correctly. We see that an equilibrated
VMC run is set to go for nmove= 250 moves in order to produce nwrcon= 250 configs. For DMC
equilibration, we run 100 blocks (nblock dmc equil) of 10 moves (nmove dmc equil). For the
statistics accumulation we run 200 blocks (nblock dmc stats) of 200 moves (nmove dmc stats).
The DMC nconfig parameter is set to 250 - the same as nwrcon. The only reason nconfig and
nwrcon would ever differ is on a parallel machine; config generation is very fast, and can be done
quickly on far fewer nodes than the DMC calculation. Running config generation on batch queues
with small numbers of nodes thus usually reduces time spent waiting in queues; increase nwrcon in
proportion to the reduction in the number of nodes to maintains the same total config number. The
dtdmc parameter is the DMC timestep - note that it is much smaller than the VMC timestep (it
needs to be small because the DMC Green’s function is only exact in the limit as the timestep goes
to zero). A typical value in a DMC simulation might be 0.003. Note that for accurate work, you need
to consider extrapolating to zero timestep (see the utility extrapolate tau). Note finally that irun
is set to 2 - indicating that we do a VMC calculation first. Now type rundmc and wait till the file

16



DMC FINISHED appears.

Amuse yourself by looking at the output files in the io directory. Now type reblock in the directory
where the dmc.hist and dmc.hist2 files are (reblock also reads input to determine some input
parameters it needs to know about - it will ask you about these if it can’t find input). If all files
are present, reblock will read these files and then starting asking you questions. What units do you
want the answer in? Whatever you want. At which line of dmc.hist do you want to start computing
statistics? The move number where the green line in the graphit output becomes approximately
constant (e.g. 501 in the NiO case). Average over how many lines? Usually input ’0’, meaning use
the rest of the (now equilibrated) data in the file from lines 501 to the end. Reblock will then show
you a reblocking analysis, and ask you to choose a block length. Choose a value where the ’Std err
of mean’ column starts to plateau (again - the plot reblock utility can help you with this). A value
of 64 might be typical. Reblock will then print out the final DMC energies and error bars, together
with an analysis of the population fluctuations, effective time steps, and acceptance ratios.

In the case of molecular hydrogen, the final energy is -1.1744731 ± 0.00056. The exact energy is -
1.1744757 a.u. so this result is pretty good without paying particular attention to getting it absolutely
right, which is promising.

6.2.9 How to generate localized orbitals

For large systems a significant speed up may be gained by using localized orbitals in CASINO instead
of the canonical delocalized orbitals generated by the DFT/HF code. Currently this facility is not
fully implemented and such orbitals may only be generated by post-processing a pwfn.data file (a
localized orbital facility for Gaussian basis sets will be added soon). Additional limitations mean that
currently only cuboidal simulation cells with a single k point (k = 0) for spin-unpolarized systems
may be treated. A detailed discussion on the use of localized orbitals in QMC will appear in the
Theoretical Background section fairly soon.

Let’s now look at the procedure for setting up a calculation with localized orbitals using the
silane molecule (SiH4) as an example. The required input files have been set up appropriately in
CASINO/examples/molecule/splines/silane localized.

It is assumed that the user is trying out this example on a serial workstation. (The
generate spline utility can be run in parallel: an appropriate job submission script has to be used.)

1. Carrying out the transformation from Bloch to Wannier orbitals. The first stage
requires the pwfn.data and input wannier1 files. Type xwannier to run the wannier con-
version utility. The output consists of a new plane-wave file pwfn.data.wannier and a file
wannier centers.dat that contains a list of the Wannier function centres.

2. Type mv pwfn.data pwfn.data.bloch and then type mv pwfn.data.wannier pwfn.data. From now
on, we will work with localized orbitals.

3. Generation of a spline representation of the orbitals. We could run CASINO using the
localized orbitals represented in the plane wave basis; however, it is faster and more memory
efficient to represent the localized orbitals numerically. The next stage requires a pwfn.data file
(and corresponding wannier centers.dat file if this exists) and a generate.dat2 file. Type
generate spline to run the utility for producing the splined orbitals. The output of this code is
a swfn.data file3.

1The only parameter the user is ever likely to want to change in input wannier is the number of states included
in the Wannier transformation (all the states in the pwfn.data file from 1 up to this number are transformed; any
remaining states are unchanged). In the present case, we are including all the states in the transformation.

2For this example, we shall use localized grids for all the splined states; if, however, some states were non-localized
then it would be advisable to represent those states over the whole simulation box. The “multiplication factor” in the
generate.dat file controls the fineness of the spline grid. Generally, this needs to be set to at least about 2 before the
kinetic energy of the splined orbitals is the same as that of the orbitals in the plane-wave basis to an high degree of
accuracy. The orbitals have a spherical truncation surface such that 99.7% of the square of the orbital norm lies inside
this radius. A further shell of width at least 0.05 a.u. is saved from truncation: the orbital can be brought smoothly to
zero over this shell region.

3The swfn.data file is unformatted. If you wish to look at its contents then use the format spline utility to generate
a formatted swfn.data.formatted file. This is also useful if you want to transfer a swfn.data file from one platform to
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4. Carrying out a QMC calculation. Now, finally, we can carry out QMC calculations using
the localized orbitals. For example, type runvmc to carry out a HF VMC calculation. The usual
CASINO inputs4 are required, along with the swfn.data file.

6.3 How to run the code : run scripts

As you may have already gathered, although CASINO can be run by sitting in a directory containing
input files and typing casino > & out, it is recommended that one run it using the shell scripts
provided in the CASINO/scripts directory.

There are three basic scripts, meant to control VMC, DMC and variance minimization calculations.
Predictably their names are runvmc, rundmc and runvarmin. These may be different for different
machine types, but set-up should be automatic following definition of the QMC ARCH environment
variable i.e. the relevant scripts for your machine type should be copied into your path on typing
make in CASINO/utils.

The scripts are designed to reduce the effort of doing QMC calculations to just one command. They
are most useful when using parallel machines with a batch queueing system. They are written to
detect all common errors that a user may make in setting up a calculation, so that the fault is
detected immediately rather than when the batch job starts (which may be many hours later). If
the job would take longer than the maximum ‘time slot’ on such a machine, the scripts allow you
to ‘chain’ jobs, so that for example typing runvmc -n 5 16 will run 5 successive VMC jobs on a 16
node queue with (say) an 8-hour time limit on each job, with the script handling all the required i/o
decisions. The result is 40 hours worth of statistics.

DMC calculations and variance minimization calculations are more complicated, since they
require you to submit different types of job within a single calculation (DMC: config genera-
tion/equilibration/statistics accumulation), VARMIN: n iterations of config generation/variance
minimization). These are handled automatically with all changes to the input files being performed
by the scripts. For example, the first step in a DMC calculation is to perform a VMC calculation
to generate a bunch of configurations distributed according to the square modulus of the trial wave
function. The next step is to use DMC to equilibrate the configurations. Amongst other things, the
rundmc script will automatically change the ‘IRUN’ flag in the input file from 2 to 3, telling CASINO
to switch to a DMC calculation.

See the usage notes at the top of each script for precise information about how they work, or, on
parallel batch machines at least, just type the name of the script to get a usage note. With all
scripts, there are normally -debug, -prof and -dev flags to run the versions of the code compiled with
different compiler options which are automatically stored by the Makefile in different bin directories.

Note that, on a batch machine, the script will create a batch queue file for the first job in the list,
show it to you, and ask you whether it should submit it. You should answer ‘y’ or ‘n’. Then, if you
have requested that the script perform some action in the future (when the job it has just submitted
has finished), then the script will stay alive after submitting the job and demand to be put in the
background. Do this by holding down the control key and pressing ‘z’ to suspend the script, followed
by the command bg to put it in the background. The script will lurk and monitor the queues every
so often to check when the current job has finished, then perform the appropriate actions to submit
the next job in the sequence and so on.

The following notes try to demonstrate typical usage of these scripts on various types of machine:

another, since the unformatted file can usually only be read by the machine that generated it. Run format spline in
the presence of swfn.data.formatted file to produce the corresponding unformatted file.

4Note the following in the input file: 1. We have set isperiodic to false because we are simulating a molecule. Now
that we have generated truncated localized orbitals, we can dispense with periodicity; 2. We have provided lists of the
occupied states for spin-up and spin-down electrons (the statelist up and statelist down blocks).
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Workstations/parallel machines without batch queues:

runvmc
runvmc -big
runvmc -nnodes 4

Do a VMC calculation. The -big option will create the potentially large vmc.hist files in
a pre-defined scratch space and create a link to them. There is not usually a -n option to
chain multiple jobs, because there is no time limit on a typical workstation. The -nnodes
flag says how many nodes to use on parallel machines.

runvarmin -n 2 -v
runvarmin -n 2 -v -nnodes 16

Run 2 iterations of a config generation/variance minimization cycle (4 CASINO jobs al-
together). The -v flag tells it to run a post-optimization VMC calculation with the final
optimized Jastrow. The optional -nnodes flag says how many nodes to use on parallel
machines.

rundmc
rundmc -c -e -s
rundmc -s
rundmc -nnodes 32

Run a DMC calculation. Default is to do one config generation, one DMC equilibration,
one DMC stats accumulation, though this may be changed by supplying the -c -e or -s
flags explicitly. Let’s say you have completed a DMC calculation, but the standard error
is too large. You can accumulate more statistics on top of the ones you already have by
typing ‘rundmc -s’. Remember to do a DMC calculation with the rundmc script, you need
to setup your input file to do a VMC config generation. All parameter changes to run
DMC equilibration and stats accumulation will then be performed automatically by the
script. The optional -nnodes flag says how many nodes to use on parallel machines.

Parallel machines with batch queues:

Depends entirely on the computer architecture. In all cases, just typing the name of the script will
present you with a usage note, detailing exactly what options, queues, nodes and time limits are
available.

runvmc -n 2 16
runvmc -n 2 16 night

Chain 2 successive VMC jobs on 16 nodes. Some machines require an extra parameter
such as test/short/medium/long or day/night/weekend or some such, to indicate which 16
node queue you want to submit to. ‘test’ might denote a 10 minute queue, ‘weekend’ a 24
hour one etc..

rundmc -c -e -s 4 16
rundmc -c 4 test -e -s 4 16 long

Run 1 config generation, 1 DMC equilibration, followed by 4 chained DMC statistics accu-
mulation jobs on 16 nodes. Again, some machines might require test/short/medium/long.
Note that some scripts will allow you to run DMC config generation jobs—which are gen-
erally very quick—on a small number of nodes (say 4) with a short time limit, then do
the actual DMC on lots of nodes with a long time limit which is what the second example
above does. Note that it is not currently possible to use the scripts to chain multiple DMC
equilibration jobs—only 1 is allowed. This behaviour could be simulated through multiple
‘rundmc -e’ jobs, but the scripts will be changed to do this properly eventually—it’s only
important for incredibly large systems anyway).
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runvarmin -n 3 16
runvarmin -n 3 16 night

Run 3 iterations of a config generation/variance minimization cycle on 16 nodes. Again,
some machines might require you to specify test/short/medium/long etc..

Note if you make any changes to the scripts in the appropriate CASINO/scripts/$QMC ARCH
directory, typing make in the utils directory will copy the modified scripts to the appropriate bin qmc
directory which should be in your path.

There is also a runvarmin1 script on some machines, which is designed for machines where you
can waste weeks sitting around in batch queues (such as Cambridge HPCF Origin 2000 machines).
Basically what it does is to generate complicated batch scripts which will do lots of separate CASINO
jobs within a single allocated time slot in some queue. See the top of the script for more information.

Note that ultimately, the scripts for the different machine types wil be merged into two—one for batch
queuing systems, one for interactive use, but as this is deeply tedious I keep putting it off.
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7 Files used by CASINO

CASINO uses a variety of files during the course of its operation to store things in. Here is a list of
them:

Input Files

input Parameters controlling the QMC calculation (See Section 7.1)
xx pp.data Pseudopotential, if required (xx=element symbol in lower case e.g. si, c) (See Section 7.3)
jastrow.data Jastrow factor, if required (See Section 7.2)
xwfn.data (x=g,p,b,a) Trial wave function in Gaussians, plane waves, blips or on a grid.
heg.data Control file for electron and electron-hole systems

Mandatory : input plus either an xwfn.data file or a heg.data file. Others optional.

In/Output Files

eepot.data Fourier transform of 1/r—required for the MPC interaction
Generated by CASINO with IRUN=5 and used in subsequent runs.

density.data Charge density in Fourier space—required for the MPC interaction.
Generated by CASINO with IRUN=6 and used in subsequent runs.

vmc.posin/vmc.posout List of final electron coordinates on all nodes
config.in/config.out List of positions/energies etc. of a set of configurations – required

by DMC and varmin

Output Files

out CASINO output file (sent to standard out : named ‘out’ by the run scripts)
vmc.hist VMC history file (See Section 7.9)
dmc.hist DMC history file, most important info (See Section 7.10)
dmc.hist2 DMC history file, less important info (See Section 7.10)

Gaussians:

Plane waves:
CASINO

gwfn.data

input

pseudopotential
         file

out

TCM atomic code

Numerical orbitals:

ABINIT

CASTEP

JEEP

K270

GAUSSIAN94/98

CRYSTAL95/98/03

awfn.data

swfn.data

bwfn.data

PWSCF

TURBOMOLE

pwfn.data

Splines

Blips
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Input Files:

The contents and format of the various input and output files will now be described.

7.1 Basic input file : input

The file ‘input’ contains all the parameters needed to control the QMC calculation. A complete list
of the input parameters is given below. Further details, including default values, may be found by
using the casinohelp utility. Type ‘casinohelp all’ to get a list of all keywords that CASINO knows
about, or ‘casinohelp keyword’ for detailed help on a particular keyword. Type ‘casinohelp search
text ’ to search for the string text in all the keyword descriptions. Create a blank file containing the
keyword ‘input example’ and type ‘runvmc’—this will create a sample input file containing all valid
input keywords and their default values in the correct format.

The input file is meant to be very flexible and the list of understood keywords can vary with time
without breaking anything. See the comments at the top of the ‘esdf.f90’ module for more information.

• Each line is of the form ‘keyword : value’. There must be a space either side of the colon.

• The parameters are divided into types : string/integer/single/double/physical/boolean. Vari-
ables of ‘physical’ type must be supplied with a unit, such as ‘hartree’, ‘eV’, ‘rydberg’ or
Joules/Megaparsec. All reasonable physical units are understood.

• The parameter names are case insensitive (e.g. EnerGyCuToFF is equivalent to
energycutoff) and punctuation insensitive (energycutoff is equivalent to energy cutoff is equiva-
lent to energy-cutoff). Punctuation characters are ‘.’, ‘ ’, and ‘-’.

• Some of the parameters are of ‘block’ type which means that multiple parameters must be
supplied which may be spread over several lines. See, e.g., ‘wavefunction’ or ‘lineplot’.

Here is the current list of the input parameters in alphabetical order. Note that the casinohelp facility
is always up to date (it runs CASINO to find out what it knows about) - but this manual may not
be.

Input parameters:

ALIMIT (Real) Parameter required when LIMDMC=2 or 3. A value of 0.25 was suggested by
Umrigar et al. for all-electron calculations, but a value of 1.0 may be more appropriate for
pseudopotential calculations. The answers are insensitive to the precise value. ALIMIT is not
required if NUCLEUS GF MODS is set to true. See Section 10.6.

BTYPE (Integer) Determines type of basis set. Possible values:
1: Plane-waves (input from CASTEP, PWSCF, ABINIT, GP, k207);
2: Gaussians (from CRYSTAL95/98/03, GAUSSIAN94/98/03, TURBOMOLE);
3: Numerical (atoms only);
4: Blip function (B-spline) basis (from transformation of pwfn.data using the blip converter).;
5: Gaussian Wannier orbitals (non-functional).
6: Spline basis (from transformation of pwfn.data using the generate spline converter)
Note that the definition of BTYPE was changed in December 2003. This affected only blip and
spline inputs, and (obviously) the various electron-hole phases.

CALC VARIANCE (Logical) If CALC VARIANCE is true then the variance of the local energy
is calculated in each block of VMC. If several block are used then the block variances will be
averaged and the standard error in the variance will be calculated. The variance calculation
assumes that the individual energies are uncorrelated, so CORPER should be given a large
value. Note that VMC METHOD must be 1 if the variance is to be calculated.

CEREFDMC (Real) Constant used in updating the reference energy in DMC algorithm. See Sec-
tion 10.5.
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CHECKWFN (Logical) Enable a numerical check of the analytic orbital derivatives coded in the
various routines such as gaussians periodic/gaussians mol/bwfdet/pwfdet etc.

CONFIGS VERBOSE (Logical) Setting CONFIGS VERBOSE to .true. will cause the printout
of condata xxx files on each node, where xxx is the id number of the node. These files contains
extra information about the energies of generated configs which is useful in debugging and so
on but is not normally required.

CON LOC (Character) Directory to which configurations written.

CORPER (Integer) VMC only. Local energy calculated only every CORPER moves.

CUSP CORRECTION (Logical) When expanded in a basis set of Gaussian functions, the electron-
nuclear cusp present in all-electron calculations is not represented correctly, since the gradient of
a Gaussian is necessarily zero there. Clearly this only matters for s-type GTFs, since all functions
of higher angular momentum have a node at the nucleus. When the CUSP CORRECTION flag
is activated, each orbital expressed as a sum of s-type Gaussians is replaced within r = rc by
ISIGN∗exp (p(r)), where p(r) is the polynomial p = α1 + α2r + α3r

2 + α4r
3 + α5r

4 such that
p(rc), p′(rc), p′′(rc) are continuous, p′(0) = −Znuc. EL(0) is set by a smoothness criterion.
This procedure can be expected to greatly reduce fluctuations in the local energy in all-electron
Gaussian calculations. See Section 10.13 for more details.

CUSP INFO (Logical) If CUSP CORRECTION is set to true for an all-electron Gaussian basis set
calculation, then CASINO will alter the orbitals inside a small radius around each nucleus in
such a way that they obey the electron-nuclear cusp condition. IF CUSP INFO is set to true,
then information about precisely how this is being done will be printed to the output file. Be
aware that in large systems, this may produce a lot of output. Furthermore, if you create a file
called ’orbitals.in’ containing an integer triplet specifying which orbital/ion/spin you want, the
code will additionally print graphs of the specified orbital, radial gradient, Laplacian and ’one-
electron local energy’ to the files orbitals.dat, gradients.dat, laplacians.dat and local energy.dat.
These graphs may be viewed using xmgr/grace or similar plotting programs. See Section 10.13
for more details.

DBARRC (Integer) Maximum number of blocks between recalculation of DBAR matrices (see Sec-
tion 10.15).

DENFT THRESHOLD (Real) When calculating the Fourier transform of the charge density and
writing the result to the density.data file (which CASINO will do if you set IRUN=6) the
program only writes data for those G vectors where the absolute value of either the real part or
the imaginary part of the Fourier coefficient is larger than a threshold. This is that threshold.
The default of 10−6 should be good enough.

DTVMC (Real) Time step for VMC run (atomic units).

DTVMC2 (Real) Time step for VMC run (atomic units). In an electron-hole calculation, DTVMC
is used to move the electrons while DTVMC2 is used to move the holes.

DTDMC (Real) Time step for DMC run (atomic units).

EDIST BY ION, EDIST BY IONTYPE (Block) The optional EDIST BY ION block allows
fine control of the initial distribution of the electrons before equilibration starts. The standard al-
gorithm shares out the electrons amongst the various ions weighted by the pseudo-charge/atomic
number of the ion. Each electron is placed randomly on the surface of a sphere surrounding its
parent ion. There are certain situations, for example a simple crystal with a very large lattice
constant, where the standard algorithm in the POINTS routine may give a bad initial distribu-
tion which cannot be undone by equilibrating for a reasonable amount of time. This keyword
allows a user-defined set of electron/ion associations to be supplied. The syntax is to supply
N ION lines within the block which look like, e.g., 1 4 4, where the three numbers are: the ion
sequence number; the number of up-spin electrons associated with this ion; the number of down-
spin electrons associated with this ion. Alternatively one may use the EDIST BY IONTYPE
keyword block where you replace the ion sequence number with the ion type sequence number
and the information is supplied only for each particular type of ion.
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EH SAFEMODE (Logical) In some cases the electron-hole distribution resulting from a variance
minimization run can yield completely wrong VMC results. It is found that the problem is
introduced by a Jastrow factor which pulls electrons and holes together so strongly that the
wave function collapses. This problem can be solved by setting EH SAFEMODE to T, which
prevents the e-h component of the Jastrow factor from cancelling the other terms. It is recom-
mended to set VM SMOOTH LIMITS=T, OPT MAXITER≈3, and running many (around 50)
variance minimization iterations when using this feature - the runvarmin script will allow this if
EH SAFEMODE=T. After this, it is a good idea to set EH SAFEMODE=F and run a normal
variance minimization from the output of the previous one.

ENERGY CUTOFF (Physical) This is the energy cutoff for G vectors used in (a) the FFT of the
MPC interaction required when generating eepot.data (IRUN=5), and (b) the FFT of the one-
particle density required when generating density.data (IRUN=6). The program will suggest a
value for ENERGY CUTOFF if the existing value is unsuitable, or if the user inputs a value of
zero.

E OFFSET (Physical) This keyword gives a constant shift in the total energy such that the the final
result will be E = Ecalc − Eoffset. The default is zero.

ESUPERCELL (Logical) By default total energies and their components are printed as energies
per primitive cell. Switching this flag to T forces printing of energies per simulation cell in the
output file.

ETYPE (Integer) Determines type of electron-hole phase (assuming btype==0). Possible values:
1: Homogeneous electron gas (fluid phase: plane wave basis);
2: Homogeneous electron gas (crystal phase: Padé function basis);
3: Homogeneous electron-hole gas (fluid phase: plane wave basis);
4: Homogeneous electron gas (excitonic insulator phase: exponential pairing basis);
5: Homogeneous electron-hole gas (crystal phase: Padé function 6: Quasi-2d jellium slab (fluid
phase with hard walls).

EWALD CHECK (Logical) CASINO and the wave function generating program should be able
to calculate the same value for the nuclear repulsion energy, given the same crystal structure.
By default CASINO therefore computes the Ewald interaction and compares it with the value
given in the wave function file. If they differ by more than 10−5, then CASINO will stop and
complain. If you have a justifiable reason for doing so, you may turn off this check by setting
EWALD CHECK to F.

EWALD CONTROL (Real) This is the percentage increase (from the default) of the cutoff radius
for the reciprocal space sum in the Ewald interaction - used for calculating electrostatic interac-
tions between particles in periodic systems. Its default value is zero. Increasing this will cause
more vectors to be included in the sum, the effect of which is to increase the range of the Ewald
gamma parameter over which the energy is constant (the default gamma should lie somewhere in
the middle of this range). This need only be done in exceptional circumstances and the default
should be fine for the general user.

FIXED E POS (Block) This is the position r at which to fix an electron during calculation of the
pair correlation function g(r,r’) activated with the PAIR CORR keyword. To be given in atomic
units.

GAUTOL (Real) Tolerance for Gaussian orbital evaluation. Neglect contribution if exp(−αr2) <
10−GAUTOL.

GROWTH ESTIMATOR (Logical) Turn on calculation of the growth estimator of the total energy
in DMC calculations. The difference between mixed estimator and the growth estimator for the
energy provides a rough estimate of the time-step bias.

IACCUMULATE (Logical) .TRUE. for accumulation of averages. Normally turned off during
equilibration.
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IBRAN (Logical) If set to .TRUE. then enables weighting and branching in DMC.
IBRAN=.FALSE. may be used to check the DMC algorithm.

IDEN (Integer) Controls writing of Fourier-space charge density to file:
1: Density appended to file density.data (or written to mol density.data in finite systems);
0: Density not written out.

INEW (Integer) Determines whether this is a new run or a continuation of a previous one:
1: (VMC) Start a new run;

(DMC) Read old VMC configurations and recalculate the current best estimate
of the ground-state energy as the mean of the configuration energies;

0: (VMC) Continuation of old run. Read in old configurations;
(DMC) Continuation of old run. Do not recompute the current best estimate
of the energy.

INPUT EXAMPLE (Logical) If INPUT EXAMPLE is .TRUE. then write out an example of a
QMC input file with all currently known keywords and their default values. A modified version
of this can be used as an input file in future runs.

IRUN (Integer) Determines type of calculation. Possible values:
1: VMC run with wave function of determinant(s) only;
2: VMC run with a Slater-Jastrow wave function;
3: DMC run;
4: Variance minimization run (for optimizing a trial wave function);
5: Generate eepot.data file for geometry in xwfn.data (x=p, g), for MPC interac-

tion. See Section 10.20.4;
6: Generate density.data file for geometry given in xwfn.data (x=p, g).

ISOTOPE MASS (Real) Nuclear mass override for the relativistic corrections activated by RELA-
TIVISTIC. This keyword can be used to define the nuclear mass (in amu) if you need to override
the default value (which is averaged over isotopes according to their abundances). The default
(given in the table in Section 10.27) is used if ISOTOPE MASS is set to zero. The atomic mass
unit (amu) in this sense means ‘the ratio of the average mass per atom of the element to 1/12
of the mass of 12C’.

ISPERIODIC (Logical) .TRUE. if and only if system is periodic in 1, 2 or 3 dimensions.

ITERAC (Integer) Determines type of electron-electron interaction:
1: Ewald interaction (see Section 10.20) or 1/r for finite systems;
2: MPC interaction (see Section 10.20.4);
3: Ewald and MPC. Ewald used in DMC propagation;
4: Ewald and MPC. MPC used in DMC propagation.

JASBUF (Logical) If JASBUF is .TRUE. then the chi term in the Jastrow function for each electron
in each configuration is buffered: saves time at the expense of memory. Clearly this will have
no effect in systems without one-body terms in the Jastrow, such as the HEG.

JASTROW PLOT (Block) This utility allows you to plot u(rij), χ(ri) and f(ri, rj , rij) terms in
the new Jastrow factor. The first line is a flag for whether the Jastrow factor is to be plotted
(0=NO, 1=YES); the second line holds the spin of particle i; the third line holds the spin of
particle j; the fourth line holds the (x, y, z)-position of particle j (for plots of f); the fifth line
holds a vector with the direction in which i is moved (for plots of f); and the sixth line holds the
position vector of a point on the straight line along which electron i moves (for plots of f). Note
that the nucleus is assumed to lie at the origin. If f is plotted, the jastrow value f ?.out files
contain the value of f against the distance from the point given in line 6.

KWARN (Logical) The KWARN flag is relevant only in calculations using a plane wave basis set.
If the flag is set to .TRUE., then the routine PWFDET SETUP will issue a warning whenever
the kinetic energy calculated from the supplied orbitals differs from the DFT kinetic energy
given in the pwfn.data file by more than an internal tolerance (usually set to 10−6). If the flag
is .FALSE., then CASINO will stop with an error message on detecting this condition. Note
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that in cases where the DFT calculation which generated the orbitals used fractional occupation
numbers, the kinetic energy mismatch is very likely to occur since QMC deals in principle only
with integer occupation numbers, hence the existence of this flag.

LCUTOFFTOL (Real) This is used to define the cutoff radius for the local part of the pseudopo-
tential. It is the maximum deviation of the local potential from −z/r at the local cutoff radius.

LIMDMC (Integer) Set modifications to Green’s function (see Section 10.6.) May take values:
0: no modifications applied;
1: Depasquale et al. limits to drift-vector and energy;
2: Umrigar et al. modifications (need to supply ALIMIT parameter);

LINEPLOT (Block) This utility allows you to plot the value of certain quantities (such as orbitals
and their derivatives, or various local energy terms) along a line from point A to point B. The
data will be plotted in a format suitable for xmgr/grace in the file lineplot.dat. The syntax
of the block is as follows : LINE 1: what to plot. This can be : 1=orbitals, 2=grad x of orb,
3=grad y of orb, 4=grad z of orb, 5=laplacian of orb, 6=local e-i potential, 7=local energy with
N − 1 electrons fixed in random positions (or specified positions - see later).
Then for what to plot=1-5 add lines 2-7 ; for what to plot=6, add lines 5-7 ; for what to plot=7,
add lines 2a,3a+,5-7.
LINE 2: number of orbitals norb
LINE 3: norb orbital sequence numbers identifying the orbitals to be plotted
LINE 4: spins (1 or -1) for each of the orbitals in the previous line
LINE 5: the number of points to be plotted along the line
LINE 6: xyz coordinates of point A (in a.u.)
LINE 7: xyz coordinates of point B (in a.u.).
When plotting the local energy, the positions of up to N − 1 electrons may be fixed (e.g. to
investigate e-e coalescences). To do this add the following lines in place of lines 2-4 :
LINE 2a: number of electrons to fix (0 if you don’t want to fix any)
LINE 3a+: position of each electron you want to fix (in a.u., one per line).

LWDMC (Logical) Weighted DMC only: allow configuration weight to vary between WDMCMIN
and WDMCMAX before killing or branching.

MAKEMOVIE (Logical) Plot the particle positions every MOVIEPLOT moves (see Section 11).

MAX REC ATTEMPTS (Integer) This is the maximum number of times DMC will attempt to
restart a block if it continues to encounter catastrophes. Relevant only if the TRIP POPN
keyword is set to a non-zero value. See the discussion in Section 10.10 for more details.

MOVIECELLS (Logical) If .FALSE. then MAKEMOVIE will plot the unit cell; if .TRUE. then
nearest-neighbour cells in the (x, y)-plane will also be written (see Section 11).

MOVIENODE (Integer) Plot the particle positions on node MOVIENODE (see Section 11).

MOVIEPLOT (Integer) Plot the particle positions every MOVIEPLOT moves (see Section 11).

NBLOCK (Integer) The total number of blocks of NMOVE moves in the run. N.B., you should
use the REBLOCK utility in the utils directory to see the effect of varying the block size on
the variance after the calculation has completed. In VMC NBLOCK just determines how often
block averaged quantities are written to the output file. In DMC the configuration population is
redistributed among the nodes and may, in extremis, be renormalized at the end of each block.

NCONFIG (Integer) DMC only. Initial number of configurations per node. This can be different
from NWRCON (number of configs written out by preliminary VMC run) due to the possibility
of the config generation and DMC simulation being run on different numbers of nodes on a
parallel machine (this might be desirable as the VMC part is often very quick and can be run on
relatively few nodes). It is possible to carry out a DMC run with a target weight of NCONFIG=1
configurations per node, provided you are running on more than one node. This is liable to lead
to parallel inefficiency, however, especially on small numbers of nodes.
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NEIGHPRINT (Integer) NEIGHPRINT = n will generate a printout of the first n stars of neigh-
bours of each atom in the primitive cell, with the relevant interatomic distances given in both
Angstrom and a.u. If n = 0 or if you are an atom-free electron or electron-hole fluid phase, then
the keyword has no effect.

NEQUIL (Integer) Number of Metropolis equilibration steps. Note that the correlation period is
not accounted for, i.e., NEQUIL configuration move attempts are made.

NEWOPT METHOD (Text) NEWOPT METHOD specifies the method used to minimize the
quartic LSF. NEWOPT METHOD should be one of: ’CG’ (conjugate gradients), ’MC’ (Monte
Carlo), ’LM’ (line minimization), ’SD’ (steepest descents), ’BFGS’ (Broyden-Fletcher-Goldfarb-
Shanno), ’BFGS MC’ (BFGS and Monte Carlo), ’CG MC’ (conjugate gradients and Monte
Carlo) or ’GN’ (Gauss-Newton). (See section 10.24).

NEU, NED (Integers) Number of up-spin and down-spin electrons.

NHU, NHD (Integers) Number of up-spin and down-spin holes.

NEWOPT ITERATIONS (Integer) NEWOPT ITERATIONS specifies the maximum num-
ber of conjugate-gradients, steepest-descent or BFGS iterations to be performed if
NEWOPT METHOD is ’CG’, ’SD’, ’BFGS’, ’CG MC’ or ’BFGS MC’. If NEWOPT METHOD
is ’MC’, ’LM’, ’CG MC’ or ’BFGS MC’ then it specifies the number of line minimizations to be
performed. (See section 10.24).

NLCUTOFFTOL (Real) This is used to define the cutoff radius for the non-local parts of the
pseudopotential. It is defined as the maximum deviation of the non-local potentials from the
local potential at the non-local cutoff radius.

NLRULE1 (Integer) Rule for non-local integration in production VMC or DMC run, see Sec-
tion 10.18. Currently assumed to be the same for all atoms if it is controlled through this
keyword ; you can provide an override value of NLRULE1 for particular atoms at the top of the
corresponding pseudopotential file.

NLRULE2 (Integer) Rule for non-local integration in configuration generation for DMC or wave
function optimization, see Section 10.18. Currently assumed the same for all atoms if it is con-
trolled through this keyword ; you can provide an override value of NLRULE2 for particular
atoms at the top of the corresponding pseudopotential file. It is usual to set NLRULE2 greater
than NLRULE1 as the accuracy of the integration is more critical in config generation (errors in
the non-local energy bias wave function optimization and DMC calculations), but note that set-
ting it to something different than NLRULE1 can lead to a significant performance disadvantage
when VMC METHOD=1 is used as all the energies have to be computed again.

NMOVE (Integer) For DMC NMOVE is the number of moves of all electrons in a block. For VMC
the total number of moves of all electrons in a block is NMOVE×CORPER×NVMCAVE.

NPCELL (Block) Vector of length three giving the number of primitive cells in each dimension that
make up the simulation cell. N.B., for the 1D periodic case, NCELL(2) and NCELL(3) must be
1; for 2D slab case NCELL(3) must be 1.

NUCLEUS GF MODS (Logical) This keyword is the switch for enabling the use of the modifica-
tions to the DMC Green’s function for the presence of bare nuclei, suggested in J. Chem Phys.
99, 2865 (1993), expected to reduce timestep errors in all-electron calculations.

NVMCAVE (Integer) VMC only. Instead of writing out local energies etc. every time they are
calculated (i.e., every CORPERth configuration move), we average over the NVMCAVE energies
before writing to the vmc.hist file. This saves both space and time. Note that the total number
of moves of all electrons in a block is given by NMOVE×CORPER×NVMCAVE so you will
need to reduce NMOVE proportionately if you increase NVMCAVE (this will be changed soon).

NWRCON (Integer) Number of configurations to be written out (VMC) or read in (VARMIN).
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OPT DTVMC (Integer) The purpose of OPT DTVMC is to optimize the value of the time step
DTVMC in VMC calculations in order to minimize serial correlation. This is done during the
Metropolis equilibration phase. The keyword may take two possible values : OPT DTVMC=0
(default) turns off the optimization, OPT DTVMC=1 means DTVMC is optimized in order to
achieve an acceptance ratio of (roughly) 50%. Note further that attempts have been made to
design an algorithm for optimizing the timestep by directly minimizing the correlation time. In
the end however, it was found that this required too many equiibration steps to get a clear min-
imum, and there was not much benefit over the simpler procedure of choosing a 50% acceptance
ratio.

OPT MAXEVAL (Logical) Maximum number of evaluations during optimization (default 200).

OPT MAXITER (Integer) Largest permitted number of variance minimizer iterations (default :
150).

ORBBUF (Logical) Setting ORBBUF=.TRUE. turns on DMC orbital buffering. This is an efficiency
device in which buffered copies of orbitals/gradients/Laplacians are kept for later reuse. This
has a high memory cost. Orbital buffering should always be used unless you start running out
of memory; hence the ability to turn it off.

ORB NORM (Real) Allows user to change normalization of orbitals by multiplying all of them
by this constant. Of course this should have no effect on the energy but it can be useful if
the Slater determinant starts going singular, as it might for example for some very dilute/low
density systems.

PAIR CORR (Logical) Set PAIR CORR to T to activate calculation of the pair-correlation function.
Currently restricted to periodic systems. Note you also need to give values for the FIXED E POS
block. Spherical averaging may be performed - see the PCF SPH MODE keyword.

PCF SPH MODE (Integer) Real space accumulation on radial bins around a fixed electron basi-
cally gives the information about the pair correlation function. When PCF SPH MODE has a
non-zero value the accumulation on such radial bins is performed. In order to get the spherically
averaged pair-correlation function, the radial distribution of 1/n(r) should be normalized by the
radial distribution of unity (i.e. the bin volume). So users should first accumulate the normalized
distribution with PCF SPH MODE=1, and then accumulate 1/n(r) with PCF SPH MODE=2.
Theoretical background is given in the paper PRB 68, 165103 (2003).

PERMIT DEN SYMM (Logical) If this flag is set then 1) it will be assumed that if the SCF
charge density expansion coefficients are real then the QMC ones are too; 2) the symmetry of
the SCF charge density will be imposed upon the QMC charge density data for use in the MPC
interaction. It is possible that DMC will break the symmetry of the SCF calculation; in this
case the user should turn off PERMIT DEN SYMM.

POPRENORM (Logical) If poprenorm is T then in DMC after every block the number of con-
figs (walkers) on each node will be renormalized to NCONFIG. This is achieved in subroutine
RENORM using the following method: (1) each node tells node 0 how many configs it now has.
(2) Node 0 instructs random configs on random nodes to be deleted or copied until the total
number equals NCONFIG*NNODES. Note that it is not normally required to do this, and you
should turn it on only when your run is showing abnormally large population fluctuations. Note
also that in versions of CASINO prior to sometime in early 2001 this procedure was carried out
automatically, but the DMC population control algorithm was then changed and the renormal-
ization procedure became unnecessary. Note also that using this will introduce a large bias into
the results. It should not be used for any serious calculations.

PRINTGSCREENING (Logical) Before doing a periodic Gaussian calculation, CASINO prepares
lists of potentially significant (primitive) cells and sites in each such cell which could contain
Gaussians having a non-zero value in a reference primitive cell centred on the origin. Zero is
defined as 10−GAUTOL. Turning on the PRINTGSCREENING flag prints out the important
information about this screening.
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QMC DENSITY MPC (Logical) If this flag is set then the QMC charge data at the end of the
density.data file will be used for the MPC interaction.

RANLUXLEVEL (Integer) To generate the parallel streams of pseudo-random numbers for its
stochastic algorithms, CASINO uses an implementation of the RANLUX algorithm. This is
an advanced pseudo-random number generator based on the RCARRY algorithm proposed in
1991 by Marsaglia and Zaman. RCARRY used a subtract-and-borrow algorithm with a period
on the order of 10171 but still had detectable correlations between numbers. Martin Luescher
proposed the RANLUX algorithm in 1993; RANLUX generates pseudo-random numbers using
RCARRY but throws away numbers to destroy correlations. RANLUX trades execution speed
for quality through the choice of a ’luxury level’ given in CASINO by the RANLUXLEVEL
input keyword. By choosing a larger luxury setting one gets better random numbers slower. By
the tests available at the time it was proposed, RANLUX at its higher settings appears to give a
significant advance in quality over previous generators. The luxury setting must be in the range
0-4. Level 0 : equivalent to the original RCARRY of Marsaglia and Zaman, very long period,
but fails many tests. Level 1 : considerable improvement in quality over level 0, now passes
the gap test, but still fails spectral test. Level 2 : passes all known tests, but theoretically still
defective. Level 3 [DEFAULT] : any theoretically possible correlations have very small chance
of being observed. Level 4 : highest possible luxury, all 24 bits chaotic.

RANPRINT (Integer) Setting this keyword to a value greater than zero will cause the first RAN-
PRINT numbers generated by the CASINO random number generator to be printed to a file
’random.log’. On parallel machines the numbers generated on all nodes are printed. The run
scripts should pick out random.log files from different stages of a calculation (e.g. VMC config
gen/DMC equil/DMC stats accumulation and rename them appropriately.

REDIST PERIOD (Integer) This is the number of DMC moves between configuration redistribu-
tions on a parallel machine, where the number of configurations on each processor is equalised by
transferring configurations between processors. The default is 1, but changing it to something
larger could produce a performance benefit on some machines.

RELATIVISTIC (Logical) If RELATIVISTIC is T, then calculate relativistic corrections to the
energy using perturbation theory. Note that for the moment this can only be done for closed-
shell atoms. See Section 10.27 for further details.

SPARSE (Logical) CASINO is capable of using sparse matrix algebra in some algorithms for ef-
ficiency purposes. For systems which are definitely not sparse (orbitals not well localized)
then attempting to use sparse algorithms might actually slow things down. Thus until we
work out a better way you can toggle this behaviour with the SPARSE flag. In these algo-
rithms a matrix element is considered to be zero if it less than the value of the input keyword
SPARSE THRESHOLD.

SPARSE THRESHOLD (Real) CASINO sometimes uses sparse matrix algebra for efficiency pur-
poses. This keyword defines a threshold such that a matrix element is taken to be zero if it is
less than this threshold. Changing this quantity might be used to trade speed for accuracy in
some cases.

SPIN DENSITY (Logical) Setting SPIN DENSITY to T will activate the accumulation of separate
up- and down-spin densities in the density.data file.

TESTRUN (Logical) If .TRUE. then read input files, print information and stop.

TIMING INFO (Logical) Setting TIMING INFO to F (the default) will turn off the collection of
subroutine timings. You might want to do this as the the timing routines can adversely affect
system performance on certain computers (such as Alpha or PC clusters) especially for small
systems.

TPDMC (Integer) TPDMC (Tp) is the number of timesteps for which the effects of changes in
the (theoretically constant) reference energy should be undone in order to estimate the DMC
energy at a given point. It is assumed that the best estimates of the DMC energy separated
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by an amount greater than this are not correlated by fluctuations in the reference energy. Thus
Tp should exceed the timescale of fluctuations in the reference energy. Umrigar suggests using
Tp = 10/τ where τ is the timestep. If you set it to 9999 in the input, then the code will
automatically use this value; if you set it to 0 then the reweighting scheme for population
control biasing will not be used. The latter is the default. See Section 10.8.

TRIP POPN (Integer) In the course of a DMC simulation, it is possible for a configuration ”pop-
ulation explosion” to occur. If TRIP POPN is set to 0 then nothing will be done about this. If
TRIP POPN is greater than 0 then it will attempt to restart the block if the single-node popu-
lation exceeds TRIP POPN. A general suggestion for its value would be two times NCONFIG.
See the discussion in Section 10.10 for more details.

USE COEFF FILE (Logical) Use a coefficient file with the New Optimization Method. Must be
set to true at the moment (default), as newopt can only cope with a varmin coeffs.data file for
the time being. (See section 10.24).

USE NEWJAS (Logical) If this input parameter is set to true then CASINO will use the new form
of Jastrow factor introduced around Easter 2004. If it is set to false then the old Jastrow factor
employed prior to that will be used. The former requires a jastrow.data file, while the latter
requires a jasfun.data file. The new Jastrow almost always gives a significantly lower VMC
energy and variance than the old one.

USE NEWOPT (Logical) If USE NEWOPT is T then the coefficients of the quartic LSF will be
accumulated in VMC, and the New Optimisation Method will be used in a varmin run. Note
that only linear Jastrow parameters can be optimized. (See section 10.24).

USE JASTROW (Logical) Use a wave function of the Slater-Jastrow form, where the Jastrow
factor exp(J) is an optimizable object that multiplies the determinant part in order to intoduce
correlations in the system. There are currently two forms of the Jastrow factor available in
CASINO, selectable via the flag USE NEWJAS. For historical reasons, the default value for
USE JASTROW is T, and is overriden when IRUN is 1, which is the old synonym for IRUN=2
(VMC) and USE JASTROW=F, i.e., for a Hartree-Fock VMC (HF-VMC) calculation.

VMC METHOD (Integer) VMC METHOD selects which version of VMC to use: 1) Evaluate
configuration energies at the end of the configuration move; 2) Evaluate the energy during the
move by averaging electron energies over the old and new positions; or, 3) Like 1, but propose
entire configuration moves instead of single-particle ones at the accept/reject stage. Method 1
is the default.

VM DERIV BUFFER (Logical) Setting this flag to T will speed up variance minimization by
buffering the kinetic energy terms associated with the different factors present in the wave func-
tion. This is useful because NL2SOL spends most function evaluations in computing numerical
derivatives, hence changing only one parameter at a time, which affects only a portion of the
wave function. It is currently possible to buffer all five terms in the new Jastrow function, and
the Slater determinant. For the old Jastrow this feature is not yet implemented.

VM E GUESS (Real) If VM USE E GUESS is true then VM E GUESS should be supplied as an
estimate of the ground-state energy.

VM FIXNL (Logical) Fix nonlocal in VARMIN. Currently only .TRUE. is allowed.

VM FORGIVING (Logical) Do not whinge about calculated energies not agreeing with those read
in. Recommended to be set to .FALSE..

VM INFO (Integer) Controls amount of information displayed during variance minimization. Takes
values: 1) Display no information; 2) Display energies at each function evaluation; 3) As 2), but
calculate weights as well; 4) Write out configs and their energies etc as they are read in.

VM JASCHECK (Logical) Numerical check of whether value, gradient and Laplacian of Jastrow
factor are consistent. Recommended to be set .TRUE..
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VM MODE (Character) May take values ‘linear’ or ‘direct’: see Section 10.14.
‘linear’ for optimizing parameters which occur linearly in J ;
‘direct’ for optimizing parameters which occur non-linearly in J : i.e. A.

VM OPT DET COEFF (Logical) Optimize the coefficients of the determinants in variance mini-
mization.

VM OPT JASFUN (Logical) Optimize the Jastrow factor in variance minimization.

VM OPT PAIRING (Logical) Optimize the Rex parameter used in the electron-hole excitonic
insulator phase in variance minimization.

VM REWEIGHT (Logical) If .TRUE. then use reweighting in VARMIN. If .FALSE. set all weights
to unity.

VM SMOOTH LIMITS (Logical) When set to T, the optimizing routine used in variance mini-
mization is sent a smoothed version of the set of parameters. This only affects those which are
to remain bounded such as Jastrow cutoffs. The result is a set of parameters which can vary in
the range (−∞,+∞), which can be more convenient than ignoring out-of-range values without
the minimizer knowing. A suitable hyperbolic function is used for mapping ’limited’ values into
’extended’ ones and viceversa.

VM USE E GUESS (Logical) Setting this flag to true will cause the ’variance’ in varmin to be
evaluated using VM E GUESS in place of the average energy of the config set, in an attempt to
combine energy minimisation with varmin. Otherwise the least-squares function will simply be
the variance of the configuration local energies.

VM W MIN (Real) Minimum value that a configuration weight may take during weighted variance
minimization. This parameter should have a value between zero and one. Note that the limiting
is not applied if VM W MAX = 0.

VM W MAX (Real) Maximum value that a configuration weight may take during weighted variance
minimization. Set this to zero if you do not wish to limit the weights; otherwise it should be
greater than 1.

WAVEFUNCTION Block The wave function block specifies the nature of the Slater part of the
many-electron wave function. The xwfn.data file specifies a reference configuration, which
may consist of one or more determinants. The input file allows use of either the reference
configuration (GS) or to specify excitations/additions/subtractions from GS. If the excita-
tions/additions/subtractions are made to a single determinant GS configuration then we have
to specify SD in the input file and if they are made to a multi-determinant GS configuration
we have to specify MD. Excitations/additions/subtractions are made using the keywords ‘PR’,
‘PL’ and ‘MI,’ respectively. Several changes to the GS configuration can be made at once.

WDMCMIN, WDMCMAX (Reals) Weighted DMC only: minimum and maximum weights. See
entry for LWDMC.
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7.2 Jastrow factor file: jastrow.data

The file that holds the parameter values for the Jastrow factor used by CASINO is called
jastrow.data. (Note this replaces an older form of Jastrow factor called jasfun.data which was
used until Easter 2004 - CASINO still supports this and it is therefore described in Section 10.14.4
and Appendix 19.)

The format of the jastrow.data file is as follows. This represents the state of the file before
optimization since the variable parameters are not given explicitly and are therefore assumed by
CASINO to be zero.

START JASTROW

Title

Title of system goes here.

Truncation order

3

START U TERM

Number of sets

1

START SET 1

Spherical harmonic l,m

0 0

Expansion order

6

Spin-dep params (0->uu=dd=ud; 1->uu=dd/=ud; 2->uu/=dd/=ud)

1

Cutoff (a.u.) ; Optimizable (0=NO; 1=YES)

0.d0 1

Parameter values ; Optimizable (0=NO; 1=YES)

END SET 1

END U TERM

START CHI TERM

Number of sets

2

START SET 1

Spherical harmonic l,m

0 0

Number of atoms in set

1

Labels of the atoms in this set

1

Impose electron-nucleus cusp (0=NO; 1=YES)

0

Expansion order

6

Spin-dep params (0->u=d; 1->u/=d)

0

Cutoff (a.u.) ; Optimizable (0=NO; 1=YES)

0.d0 0

Parameter values ; Optimizable (0=NO; 1=YES)

END SET 1

START SET 2

Spherical harmonic l,m

0 0

Number of atoms in set

4

Labels of the atoms in this set

2 3 4 5

Impose electron-nucleus cusp (0=NO; 1=YES)

0

Expansion order
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6

Spin-dep params (0->u=d; 1->u/=d)

0

Cutoff (a.u.) ; Optimizable (0=NO; 1=YES)

0.d0 0

Parameter values ; Optimizable (0=NO; 1=YES)

END SET 2

END CHI TERM

START F TERM

Number of sets

2

START SET 1

Number of atoms in set

1

Labels of the atoms in this set

1

Prevent duplication of u term (0=NO; 1=YES)

1

Prevent duplication of chi term (0=NO; 1=YES)

1

Electron-nucleus expansion order

2

Electron-electron expansion order

2

Spin-dep params (0->uu=dd=ud; 1->uu=dd/=ud; 2->uu/=dd/=ud)

0

Cutoff (a.u.) ; Optimizable (0=NO; 1=YES)

0.d0 0

Parameter values ; Optimizable (0=NO; 1=YES)

END SET 1

START SET 2

Number of atoms in set

4

Labels of the atoms in this set

2 3 4 5

Prevent duplication of u term (0=NO; 1=YES)

1

Prevent duplication of chi term (0=NO; 1=YES)

1

Electron-nucleus expansion order

2

Electron-electron expansion order

2

Spin-dep params (0->uu=dd=ud; 1->uu=dd/=ud; 2->uu/=dd/=ud)

0

Cutoff (a.u.) ; Optimizable (0=NO; 1=YES)

0.d0 0

Parameter values ; Optimizable (0=NO; 1=YES)

END SET 2

END F TERM

END JASTROW
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There are two additional terms which may be of benefit in periodic systems but which in practice are
very rarely used (insert these between END F TERM and END JASTROW above).

START P TERM

Spin dep (0->uu=dd=ud; 1->uu=dd/=ud; 2->uu/=dd/=ud)

1

Number of simulation-cell G-vectors (NB, cannot have both G & -G)

6

G-vector (in terms of rec latt vects) ; label

0 0 -1 1

0 -1 0 1

-1 0 0 1

1 1 1 1

1 1 0 2

1 0 1 2

Parameter value ; Optimizable (0=NO; 1=YES)

END P TERM

START Q TERM

Spin dep (0->u=d; 1->u/=d)

0

Number of primitive-cell G-vectors (NB, cannot have both G & -G)

10

G-vector (in terms of rec latt vects) ; label

0 -1 1 -2

-1 1 0 -2

-1 0 1 -2

1 1 1 -1

-1 0 0 1

0 0 -1 1

0 -1 0 1

1 1 2 2

2 1 1 2

1 2 1 2

Parameter value ; Optimizable (0=NO; 1=YES)

END Q TERM

END JASTROW

Notes:

• There are 5 types of term available: u (isotropic electron–electron terms), χ (isotropic electron–
nucleus terms), f (isotropic electron–electron–nucleus terms), p (plane-wave expansions in
electron–electron separation) and q (plane-wave expansions in electron position). All of these
terms are optional: e.g., omitting all the lines from “START Q TERM” to “END Q TERM”
will give a Jastrow factor with no q-terms. In many cases (particularly in the presence of
pseudopotentials) only u and χ terms are needed.

• The ‘truncation order’ should be either 2 or 3. If it is of value C then then the Jastrow factor is
C times differentiable everywhere; it must therefore be at least 2 for the kinetic-energy integrand
to be well-defined. If it is 3 then the local energy is continuous in configuration space (assuming
the orbitals are smooth). This is not strictly required, and leads to the loss of some variational
freedom, but it makes the numerical optimization of cutoff lengths easier.

• In a future release, the u and χ terms may be made anisotropic; there are placeholders for this
in jastrow.data. At present, however, both must be isotropic. There should only be one set
of u terms, and the spherical harmonic l and m values should therefore be set to 0.

• The ‘expansion order’of u determines the number of parameters. Typically it is given a value
between 4 and 8.

• The ‘spin-dep params’ line allows the user to specify whether the same u-parameters are to
be used for parallel- and antiparallel-spin electron-pairs. If the value is set to 0 then the same
parameters are used for parallel and antiparallel pairs (this option should not be used in general);
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if the value is set to 1 then different parameters are used for parallel and antiparallel pairs; if
it is set to 2 then different parameters are used for up-spin, down-spin and opposite-spin pairs:
this is useful for spin-polarized systems.5

• The cutoff length is given a default value if it is set to 0. Note that it is possible to optimize
the cutoff length using variance minimization. This can be useful, because the choice of cutoff
length has a significant effect on the optimized energy and variance. Unfortunately, optimizing
the cutoff length is numerically difficult: variance minimization will take many more iterations
to converge if the cutoff is optimizable. Setting the truncation order to 3 can help somewhat.

• It is possible to specify exactly which of the expansion coefficients (‘parameter values’) are
optimizable and which are not. One does not need to specify all of the expansion coefficients:
any that are not listed in jastrow.data are assumed to be zero. Furthermore, if too many
are given, then the extra parameters will be ignored. If all of the parameter values in all of
the Jastrow terms are blank, as is the case in the example given above, then only the Slater
wave function will be used for the first configuration generation run when performing variance
minimization.6

• Different χ-functions are used for different species of ion: the ‘number of sets’ should be chosen
to be equal to the number of chemically-distinct species.

• The ions in each set are specified by giving a list of the numbers that label them: these are the
same as the labels used in the xwfn.data file that specifies the geometry of the system.

• It is possible to make the Jastrow factor enforce the electron–nucleus cusp condition. This should
only be done if the χ-set contains bare nuclei and the orbitals do not satisfy the cusp condition.
With a Gaussian basis set, it is much better to use the in-built cusp correction algorithm
activated with the input keyword CUSP CORRECTION rather than use the Jastrow.

• There are two spin-dependence options for χ: if it is 0 then the same parameters are used for
up- and down-spin electrons; if it is 1 then different parameters are used.7

• Similar comments to those made for u apply to the ‘spherical harmonic’ labels, the cutoff length
and the parameter values of χ.8

• The f function contains terms that approximately duplicate the u and χ terms: additional
constraints can be placed on f to remove these terms if desired. This is usually a good idea if
the cutoff length for f is about half that of u and about the same as that of the corresponding
χ-set. If the cutoff length of f is very different then duplication of u and χ should be permitted.

• The number of f -parameters grows very rapidly with the electron–electron and electron–nucleus
expansion orders. These should normally be either 2 or 3.

• The spin-dependence options for f are exactly the same as for u.

• The p and q terms can only be present in periodic systems. In practice, neither appears to
be particularly useful. Note that q should only be used if the origin is a centre of inversion
symmetry of the charge density.

• The spin-dependence options for p and q are the same as those of u and χ respectively.
5For electron–hole systems, a ‘spin-dep params’ value of 0 means that the same coefficients are used for all

spin/particle types; 1 means that different parameters are used for electron–electron, electron–hole and hole–hole pairs;
2 means that different parameters are used for parallel and antiparallel electron and hole pairs, but that electron–hole
pairs all have the same parameters; 3 means that different parameters are used for parallel and antiparallel spin-pair
types and different parameters are used for each type of particle-pair.

6The u-parameters are listed in the following order for electron systems: coefficients for spin-up pairs; coefficients
for antiparallel pairs (if spin-dependence is 1 or 2); coefficients for spin-down pairs (if spin-dependence is 2). For each
spin-pair, the number of parameters is equal to the expansion order.

7For electron–hole systems, a spin-dependence value of 0 means that the same parameters are used for all spins and
particles; 1 means that different parameters are used for electrons and holes.

8For electron systems, the parameter values are given for spin-up electrons, then (if the spin-dependence is 1) for
spin-down electrons. For each spin-type, the number of parameters is equal to the expansion order.
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• For p, a list of simulation-cell G-vectors must be provided. These are specified in terms of
the reciprocal-lattice vectors. Only one out of each G and −G should be specified. The same
parameter value is used for G-vectors with the same label.

• For q, a list of primitive-cell G-vectors must be provided. Again, G-vectors with the same
label have the same parameter value. It is possible to specify a negative relationship between
parameter values by using a negative label for the appropriate G-vectors.
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7.3 Pseudopotential file : xx pp.data

CASINO can carry out all-electron or pseudopotential calculations, but it is normally advantageous
to replace the core electrons by a pseudopotential. CASINO will automatically treat an atom as all-
electron unless there exists a pseudopotential file xx pp.data where xx is the symbol for the element
in question in lower case. This file contains the different angular momentum components of the
pseudopotential given on a radial grid and some auxiliary information in the following format.

LSDA Pseudopotential in real space for Si
Atomic number and pseudo-charge
14 4d0
Energy units (rydberg/hartree/ev):
rydberg
Angular momentum of local component (0=s,1=p,2=d..)
1
NLRULE override (1) VMC/DMC (2) config gen (0 ==> input/default value)
0 0
Number of grid points

2476
R(i) in atomic units
0.000000000000000E+000
7.178690774405650E-012

.
39.6567798705125
40.0553371342383

r*potential (L=0) in Ry
0.000000000000000E+00
0.131424063731862E-10

.
-8.00000000000000
-8.00000000000000

r*potential (L=1) in Ry
0.000000000000000E+00
-0.574393968349227E-10

.
-8.00000000000000
-8.00000000000000

r*potential (L=2) in Ry
0.000000000000000E+00
-0.128711823920867E-09

.
-8.00000000000000
-8.00000000000000

Core polarization terms
0.1650 0.5446 ! alpha (a.u.) rbaree (a.u.) usually set to 0.5*(rbars+rbarp)
0.5216 0.5676 0.7172 ! rbar for s,p,d (a.u.)

The NRULE parameters control the grid on which the angular integration is performed, see
Section 10.18, and are normally specified in the file ‘input’. The values given in ‘input’ are the
default for all atoms in the system but they can be overridden for particular elements by setting
the parameters in this file to non-zero values. Unless you explicitly wish to use a core polarization
potential (see Section 10.19), the few lines at the bottom relating to this should be omitted.

CASINO pseudopotential library: www.tcm.phy.cam.ac.uk/∼mdt26/casino users.html
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7.4 Charge density file : density.data

This contains the Fourier transform of the charge density, and it is used in the evaluation of the
Modified Periodic Coulomb (MPC) interaction. Before doing a QMC calculation with the MPC
interaction, this file should be generated from the trial wave function given in the [x]wfn.data file by
using ‘runvmc’ to run CASINO with IRUN set to 6 in the input file (note that the ‘eepot.data’ file is
also required for this). Note that if the IDEN parameter is set to 1 in the input file, then the QMC
density will be accumulated at the end of the file following the description of the charge density of
the trial wave function.

Plutonium-doped lanthanum nickelate
Charge density in reciprocal space
Real space translation vectors (Cartesians in atomic units)
0.000000000000 3.370326931161 3.370326931161 ! a1
3.370326931161 0.000000000000 3.370326931161 ! a2
3.370326931161 3.370326931161 0.000000000000 ! a3

Reciprocal space translation vectors (Cartesians in atomic units)
-0.932132911066 0.932132911066 0.932132911066 ! b1
0.932132911066 -0.932132911066 0.932132911066 ! b2
0.932132911066 0.932132911066 -0.932132911066 ! b3

Number of atoms in the unit cell
2 ! # of atoms in cell

Positions of atoms (Cartesians in atomic units)
57 0.8425817327 0.8425817327 0.8425817327 ! Atomic # and position
6 -0.8425817327 -0.8425817327 -0.8425817327 ! Atomic # and position
Number of G-vectors

6861 ! Number of G-vectors
G-vectors (Cartesians in atomic units)
0.000000000000 0.000000000000 0.000000000000 ! List of G-vectors

.

.
-13.049860754934 0.000000000000 13.049860754934
Charge density from SC calculation
8.00000000000000 ! List of rho(G)

.

.
-2.020855523387648E-006
BOOLEAN for QMC charge density to follow
.TRUE. ! BOOLEAN for QMC charge density

8 ! # of primitive cells in simulation cell
2.99883837683579 ! # of moves

32 ! Number of up-spin electrons
32 ! Number of down-spin electrons

6861 ! Number of G-vectors
191.925656117491 ! List of QMC rho(G). To get the correct

. ! correct normalization divide by the #

. ! of moves and number of primitive cells
9.16791786818292

Notes:
1. The utility ‘d2rs’ can be used to convert the charge density in reciprocal space into a real space

density on a grid. This can be converted into a format readable by ‘gnuplot’ using the ‘plot density’
utility.
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7.5 MPC file : eepot.data

This contains the Fourier transform of the function f(r) defined in Section 10.20.4. It is required
when using the Modified Periodic Coulomb (MPC) interaction to compute the electron-electron
interactions. Before doing a QMC calculation with the MPC interaction, this file should be generated
from the trial wave function given in the [x]wfn.data file by using ‘runvmc’ to run CASINO with
IRUN set to 5 in the input file (Note that the ‘density.data’ file is also required for this.).

The format of the file should be obvious from looking at some of the examples.
NB: it is not necessary to regenerate this file for different supercell sizes, provided the lattice vectors in
eepot.data are obtainable from the lattice vectors in (x)wfn.data through scaling by a single parameter.
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7.6 Trial wave function files : awfn.data, bwfn.data, gwfn.data, pwfn.data,
swfn.data

These files contain the data defining the determinant part of the trial wave function. The data can
be given in a Gaussian basis set (gwfn.data), in a plane wave basis set (pwfn.data), in a blip function
basis set (bwfn.data) or in splines (swfn.data). The awfn.data file contains a trial wave function for
an atom with the orbitals given explicitly on a radial grid.

Without going into details of specific formats, the files basically contain the following information:

• Basic info about the trial wave function generating calculation (e.g., DFT/HF/etc.) including
total energy and components.

• Geometry of the system.

• Details of the k-space net used by the program that generated the trial wave function (only if
the systems is periodic).

• Details of the basis set :

- Exponents, contraction coefficients, shell types (Gaussians)
- G-vectors of the plane waves
- Blip grid

• Multi-determinant properties of the trial wave function (if any).

• Specification of the orbitals:

- Gaussian coefficients
- Plane wave coefficients
- Blip coefficients

• Eigenvalue spectrum (used to work out which orbitals to occupy and, crudely, whether the thing
is a metal or an insulator).

• The output file from the program that generated the trial wave function (not read by CASINO
- for reference only).

These files are generated automatically by various utilities available for different electronic structure
programs (see Sections 12, 13, 15, 16 and 16). The format of the different files should be clear from
looking at the various examples for different dimensionalities and basis sets.
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7.6.1 gwfn.data file specification

Dimensions of allocated arrays are shown.

For the larger fields I use the following formatting.

% strings (title,code,method,functional) may be up to 80 characters long.
* free format
$ FORMAT(3(1PE20.13)) - for reals naturally grouped in triples (e.g. coords)
& FORMAT(4(1PE20.13)) - other reals (e.g. gaussian exponents)
@ FORMAT(8I10) - lengthy lists of integers

use e.g. write(IO,format=&)(array(i),i=1,size)

First line of file is TITLE field.

MDT 1997

------------------------------------------------------------------------------

% TITLE (the title)

BASIC INFO
----------
% CODE:
name of code producing this file
(i.e. CRYSTAL95, CRYSTAL98, GAUSSIAN94, GAUSSIAN98, GAUSSIAN03, TURBOMOLE)

% METHOD:
Comment - RHF/ROHF/UHF/DFT/S-DFT/CI/etc.

% FUNCTIONAL
DFT functional name. If method not DFT then ’none’.

* PERIODICITY:
system dimension 0,1,2,3 => molecule, polymer, slab, solid

* SPIN_UNRESTRICTED:
.true. or .false. (i.e. different orbitals for different spins)

* EIONION:
nuclear-nuclear repulsion energy (au/atom)

* NUM_ELECTRONS:
number of electrons per primitive cell

GEOMETRY
--------
* NUM_ATOMS:
number of atoms per primitive cell

$ BASIS(3,NUM_ATOMS):
atomic positions(au)

@ ATNO(NUM_ATOMS):
atomic numbers for each atom

& VALENCE_CHARGE(NUM_ATOMS):
valence charges for each atom

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PERIODIC INSERT%%%%%%%%%%%%%%%%%%%%%%%%%%%%
$ LATTICE_VECTORS(3,3):
primitive lattice vectors (au)

K SPACE NET
-----------
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* NUM_K:
no. of k points in BZ

* NUM_REAL_K:
no. of ’real’ k points
(all components of ’real’ k points are either zero or half a
reciprocal lattice vector)

$ KVEC(3,NUM_K):
k point coordinates (a.u.)
NB: coordinates of ’real’ k points must occupy the first num_real_k
positions in kvec.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END PERIODIC INSERT%%%%%%%%%%%%%%%%%%%%%%%%

BASIS SET
---------
* NUM_CENTRES
number of centres with associated Gaussian functions
(i.e. number of atoms + number of non-atom Gaussian sites) per primitive cell

* NUM_SHELLS:
number of shells per primitive cell

* NUM_AO:
number of basis functions (’AO’) per primitive cell

* NUM_PRIMS:
number of Gaussian primitives per primitive cell

* HIGHEST_ANG_MOM:
highest angular momentum of shells

@ SHELL_AM(NUM_SHELLS):
code for shell type
s=1, sp=2, p=3, d= 4, f= 5 etc.. (harmonic representation)

d=-4, f=-5 (cartesian representation)
@ NUMPRIMS_IN_SHELL(NUM_SHELLS):
Number of primitive Gaussians in each shell

@ FIRST_SHELL(NUM_CENTRES+1)
Sequence number of first shell on each Gaussian centre.
Allows e.g.
do n=1,num_centres
do shell=first_shell(n),first_shell(n+1)-1
blah..

enddo
enddo
to loop over shells on each centre
Note dimension.

& EXPONENT(NUM_PRIMS):
exponents of Gaussian primitives

& C_PRIM(NUM_PRIMS)
correctly normalized contraction coefficients

& C_PRIM2(NUM_PRIMS) **must be omitted if no sp shells in basis**
correctly normalized 2nd contraction coefficients
(i.e. p coefficient for sp shells, zero otherwise)

$ SHELL_POS(3,NUM_SHELLS)
positions of shells (not necessarily atom-centred)

MULTIDETERMINANT INFORMATION
----------------------------

% GS - Ground state calculation

or
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% SD - Single determinant inc. excitations/additions/subtractions

Example:
SD Single det calculation
DET 1 1 PR 2 1 5 1 Promote electron in band 2 kpoint 1

to band 5 kpoint 1 in determinant 1,
spin 1 ("up")

or

DET 1 2 PL 6 1 Add electron spin 2 ("down") to det 1,
band 6 kpoint 1

or

DET 1 2 MI 6 1 Remove the added electron

or

% MD - Multiple determinants
MD Multideterminant
3 3 determinants
1.d0 Determinant 1 prefactor
2.d0 Determinant 2 prefactor
-1.d0 Determinant 3 prefactor
DET 3 1 PR 2 1 5 1 Promotion as examples above

ORBITAL COEFFICIENTS
--------------------

& CK(NUM_REAL_K*NUM_AO*NUM_AO + NUM_COMPLEX_K*NUM_AO*NUM_AO)
block as follows
----spin (spin-polarized calcs only)---------------------------------
/ \
----k (for solids)-------------------------------
/ \
----bands-(solids)_or MOs (molecules)------
/ \
-AO-basis functions grouped by shell-
/ \

Complex coefficients are given as 2 adjacent real numbers (real,imaginary).
Ordering of d orbital coefficients;
z2, xz, yz, x2-y2, xy
Ordering of f,g,h...: m=0,1,-1,2,-2,3,-3,4,-4.....

OTHER STUFF
-----------

* Anything you like can be written here - intended for copy of input/output
files from DFT/HF/etc.. program.
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7.6.2 pwfn.data file specification

Orbitals expanded in plane waves.
pwfn.data file example (should be self explanatory):

Si diamond

BASIC INFO
----------
Generated by:
CASTEP
Method:
DFT
DFT Functional
LDA
Pseudopotential
LDA Trouiller-Martin (1551 coeff)
Plane wave cutoff (au)
7.5
Spin polarized:
F
Total energy (au per primitive cell)
-7.84635517057440
Kinetic energy (au per primitive cell)
3.24780615624099

Local potential energy (au per primitive cell)
-1.03508540683458
Non-local potential energy (au per primitive cell)
0.144898714904598
Electron-electron energy (au per primitive cell)
-1.80295658630558
Ion-ion energy (au per primitive cell)
-8.40101804857984
Number of electrons per primitive cell
8

GEOMETRY
--------
Number of atoms per primitive cell
2
Atomic numbers and positions of atoms (au)
14 1.2824155389173550 1.2824155389173550 1.2824155389173550
14 -1.2824155389173550 -1.2824155389173550 -1.2824155389173550
Primitive lattice vectors (au)
0.000000000000000E+000 5.12966215566942 5.12966215566942
5.12966215566942 0.000000000000000E+000 5.12966215566942
5.12966215566942 5.12966215566942 0.000000000000000E+000

G VECTORS
---------
Number of G-vectors

341
Gx Gy Gz (au)
0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000

<snip>
2.44974624702536 2.44974624702536 2.44974624702536
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WAVE FUNCTION
-------------
Number of k-points
8

k-point # ; # of bands (up spin/down spin) ; k-point coords (au)
1 4 0 0.0 0.0 0.0

Band, spin, eigenvalue (au)
1 1 -2.432668987064920E-002

Eigenvector coeficients
-0.953978956601082

<snip>
0.000000000000000E+000
Band, spin, eigenvalue (au)
2 1 0.417639684278199

Eigenvector coeficients
-1.576227515378431E-012

<snip>
0.000000000000000E+000
Band, spin, eigenvalue (au)
3 1 0.417639711691157

Eigenvector coeficients
6.348405363267598E-008

<snip>
0.000000000000000E+000
Band, spin, eigenvalue (au)
4 1 0.417639745897256

Eigenvector coeficients
-2.030042411030856E-009

<snip>
0.000000000000000E+000
k-point # ; # of bands (up spin/down spin) ; k-point coords (au)
2 4 0 -0.3062182808781698 -0.3062182808781698 0.3062182808781698

Band, spin, eigenvalue (au)
1 1 6.261478573034787E-002

Eigenvector coeficients
0.683590846620266

<snip>
0.000000000000000E+000
Band, spin, eigenvalue (au)

2 1 0.156856931414136
etc.. for all 8 k points with 4 bands per k point in this case.

OTHER STUFF
-----------

* Anything you like can be written here - intended for copy of input/output
files from the PW DFT program.

7.6.3 bwfn.data file specification

Orbitals expanded in blip functions. An example of a bwfn.data file for bulk silicon is given below:

bulk Si

BASIC INFO
----------
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Generated by:
PWSCF
Method:
DFT
DFT Functional:
unknown
Pseudopotential
unknown
Plane wave cutoff (au)
7.5

Spin polarized:
F

Total energy (au per primitive cell)
-62.76695352625196

Kinetic energy (au per primitive cell)
0.E+0

Local potential energy (au per primitive cell)
0.E+0

Non local potential energy(au per primitive cell)
0.E+0

Electron electron energy (au per primitive cell)
0.E+0

Ion ion energy (au per primitive cell)
-67.208144397949283

Number of electrons per primitive cell
64

GEOMETRY
--------
Number of atoms per primitive cell
16

Atomic number and position of the atoms(au)
14 -1.282415538750 -1.282415538750 -1.282415538750
14 -1.282415538750 3.847246616250 3.847246616250
:
:
14 11.541739848750 6.412077693750 6.412077693750
14 11.541739848750 11.541739848750 11.541739848750

Primitive lattice vectors (au)
10.259324310000 10.259324310000 0.000000000000
0.000000000000 10.259324310000 10.259324310000
10.259324310000 0.000000000000 10.259324310000

G VECTORS
---------
Number of G-vectors
2085

Gx Gy Gz (au)
0.000000000000 0.000000000000 0.000000000000
-0.306218280918 -0.306218280918 -0.306218280918
-0.306218280918 -0.306218280918 0.306218280918

:
:

2.143527966427 2.755964528263 1.531091404591
1.531091404591 3.368401090099 0.918654842754

Blip grid
20 20 20
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WAVE FUNCTION
-------------
Number of k-points
1

k-point # ; # of bands (up spin/down spin) ; k-point coords (au)
1 32 0 0.0000000000000000 0.0000000000000000 0.0000000000000000

Band, spin, eigenvalue (au)
1 1 -0.015443213499

Blip coefficients
-0.347534087942
-0.517756216863
-0.528529751776
:
:
-0.450993755155
0.024823593723
-0.022992059309

Band, spin, eigenvalue (au)
2 1 -0.009057759900

Blip coefficients
-0.097602672632
-0.176031268912
-0.188226226118
:
:

(for 32 bands)

7.6.4 swfn.data file specification

Orbitals expanded in spline functions. Soon.

7.6.5 awfn.data file specification

Atomic orbitals given on a radial grid. Below is an example of an awfn.data file for beryllium:

Atomic Be wave function in real space
Atomic number
4

Total number of orbitals
2

The 1s(2)2s(2) [1S] state electronic configuration
Number of up, down spin electrons
2 2

States
1 1 0 0 % label of spin up electron, quantum number n, l, m
2 2 0 0
1 1 0 0 % label of spin down electron, n, l, m
2 2 0 0
Radial grid (a.u.)

301 % Number of radial grid points are given
0.000000000000000E+00 % Distance from centre of atom r
0.457890972218354E-02
0.477372816593466E-02
0.497683553179352E-02
0.518858448775392E-02
0.540934270674177E-02
0.563949350502860E-02

47



:
:
0.108431746952108E+04
0.113045182349640E+04
0.117854905151603E+04

Orbital # 1 [1s]
0 1 0 % spin type [0=unpolarized, 1=up, 2=down], n, l

0.000000000000000E+00 % r * Value of trial wave function at point r
0.659528705936585E-01
0.687054582044431E-01
0.715705591983797E-01
:
:
0.000000000000000E+00
0.000000000000000E+00
0.000000000000000E+00

Orbital # 2 [2s]
0 2 0

0.000000000000000E+00
0.120187930416515E-01
0.125203784849961E-01
0.130424628552784E-01
:
:
0.000000000000000E+00
0.000000000000000E+00
0.000000000000000E+00
0.000000000000000E+00
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7.7 heg.data file

The heg.data file is used to define the trial wave function used in calculations of electron and electron-
hole systems. It is the equivalent of the [x]wfn.data file used for calculations of molecular/crystalline
systems, but it is entirely self-contained and does not need to be generated by an external program.
See CASINO/examples/electron phases and CASINO/examples/electron hole phases for practical
examples with different wave function types (2D/3D fluid/crystal/excitonic insulator).

(NB: in the case of the jellium slab system (ETYPE=6) the heg.data file takes on quite a different
form - see the next section).

The basic data required are the dimensionality (2D or 3D), the Wigner-Seitz radius parameter rs
and the translation vectors of the simulation cell. CASINO works out the scaling of the translation
vectors from the number of electrons and the value of rs and builds the determinant part of the ground
state wave function accordingly.

Running through the parameters in the remainder of the heg.data file:

• Exciton units may be selected for calculations of electron-hole phases.

• The mass values only affect electron-hole phases and the logical flag indicates whether to use
particle symmetries when optimizing the Jastrow factor. Only set this true when the masses are
equal.

• In 2D, you may separate up- and down-spin electrons for electron-only phases or electrons and
holes for electron-hole phases. This is equivalent to having two 2D planes dz apart.

• For excitonic-insulator phases of the electron-hole system you may set the orbital parameter
Rex in φ = exp(−r/Rex). Alternatively you may choose to use a linear combination of Gaussian
orbitals. If Ng > 0 the Gaussian form will be selected and should be set to one unless you wish to
fit the coefficients to the exponential form. Note, by default you should include all contributions
of orbitals from other cells into the zero cell when dealing with pairing wave functions.

• For crystalline phases, you may select from a set of predefined crystal structures or define your
own by selecting ‘manual’. If there is a separation along the z-axis in 2D, as mentioned earlier,
the crystal structure in the two planes must be the same, though an offset in the x- and y-
direction may be defined. The localized orbitals are defined as Padé functions:

Φi(r) = exp

(
− k1 |r−Ri|2

1 + k2 |r−Ri|

)
,

where the ith orbital is centred at Ri. The (positive) Padé coefficients k1 and k2 are defined
next in the input file and you may select to optimize them all or constrain them due to particle
symmetry.

The final section of the file defines the primitive crystal lattice. For the same structure as the
supercell you would select one basis function and centre it on the origin. To define a different
structure, say BCC primitive with a cubic supercell, you would define the appropriate number
and position of basis functions. The positions written in terms of fractions [0,1] of the supercell
vectors. The spin variable defines a relative spin orientation between sites, assuming you have an
antiferromagnetic phase. Depending on which lattice you select, you will be allowed to simulate
different numbers of electrons, one per site.

• Note that the one-particle density matrix and relativistic options exist only in test programs
external to CASINO and have not yet been re-implemented in the main source. The program
will stop if you turn on these flags.

• Some excited state calculations can be performed—control these through the wave function
block in the input file.
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QMC DATA FILE FOR HOMOGENEOUS ELECTRON and ELECTRON-HOLE PHASES
---------------------------------------------------------------

Title
-----
Electron gas (3D ferromagnetic fcc Wigner crystal)

Dimensionality
--------------
3

r_s parameter (==> density) ; flag .true. if r_s given in exciton units
-----------------------------------------------------------------------
1.0 .false.

Simulation cell lattice vector (unscaled) 3x3 for 3D system, 2x2 for 2D system
------------------------------------------------------------------------------
0.0 0.5 0.5
0.5 0.0 0.5
0.5 0.5 0.0

Electron mass; Hole mass; ee==hh flag in Jastrow (relevant only in e-h systems)
-------------------------------------------------------------------------------
1.0 1.0 .true.

Flag to separate layers; z-axis separation of layers (au) (relevant only in 2D)
------------------------------------------------------------------------------
.false. 0.0

Pairing wave function parameter, Rex (relevant only for e-h gas with ETYPE=4)
-----------------------------------------------------------------------------
1.0

Include all cells contributing to wave function?
.true.
Number of gaussians Ng (ndet=2 only)
Ng lines : coefficients a_i, Gaussian exponents b_i
1

1.0 2.0
Fit Gaussian parameters to exp[-r] (.true.) or allow to vary freely (.false.)
.false.

Accumulate pair correlation function ; number of bins
-----------------------------------------------------
.false. 5000

Accumulate 1 particle density matrix
------------------------------------
.false.

Turn on relativistic effects
----------------------------
.false.

Crystalline phase data (relevant only for e or e-h system with ETYPE=2 or 5)
----------------------------------------------------------------------------
Type of crystal
3D:(C)ubic,(B)cc,(F)cc | 2D:(R)ectangular,(H)exagonal,(T)riangular | manual (M)
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F
Ferromagnetic (F) or (if not frustrated) antiferromagnetic (A)
F

Offset (x/y) between lattices in each layer (relevant only for 2D systems)
0.d0 0.d0

optimize all parameters
.true.

Pade coefficients k1,k2 for (in order)up elecs;down elecs;(up holes;down holes)
0.354388900376931 0.412126133902296
0.706867779971532 0.287471090722791

Number of localized orbitals
1

Positions of localized wave functions and spin of associated particle
c1*a1+c2*a2+c3*a3 , spin
0.d0 0.d0 0.d0 1
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7.8 Jellium slabs : heg.data file with ETYPE=6.

When ETYPE=6, the heg.data file format is entirely different from that of the various homogeneous
electron (or hole) systems available. The simulation cell size (in the x and y directions) is determined
by a combination of the density, given here by the r s parameter, the number of electrons, and the
slab width. The slab width is the extent in the z- direction of the region containing the positive
background charge. The z-dependency of the wave function is described using Fourier sine series
within a region determined by the wave function width; outside this region, it is assumed to be zero.
Sub-bands are allowed, and a set of Fourier coefficients must be supplied for each; only one set of
wavevectors is used. The bands may be filled automatically by setting the ’Occupy by energy’ option.
Alternatively, the band occupation for each spin may be specified directly. The energy width of each
band is given next. It is used when occupying bands automatically, and also as a consistency check.
The set of wave vectors k is given next, followed by the set of Fourier coefficients C(k) for each band.
The final z-dependence of the wave function is the same as within the Jastrow factor (shown above).

QMC data file for jellium slab
------------------------------

r_s (density parameter)
-----------------------

2.00000000000000

Slab width, wave function width
------------------------------

20.0000000000000 102.400000000000

Number of bands, number of coefficients for Fourier sine series
---------------------------------------------------------------

7 1024

Occupation by energy
--------------------
F

Band occupation
---------------

29 29
25 25
21 21
21 21
13 13
9 9
1 1

Width of each subband
----------------------
0.519117510000000
0.488868040000000
0.436931490000000
0.364359310000000
0.280391730000000
0.184220470000000
8.550147999999999E-002

Wavevectors in z-direction
--------------------------
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0.0306796157577128
0.0613592315154256
.
.
.

31.3852469201402166
31.4159265358979294

Coefficients
------------
Band 1
--------

0.0260839121091309
0.0000000000000000
.
.
.

0.0000000000044777
0.0000000000000000

Band 2
--------

0.0000000000000002
0.0089256999176878
.
.
.

etc.
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Output files

7.9 vmc.hist file

This file records information about each block of a VMC run. The first line gives the average of
the local energy over the block and its standard error in Hartrees per primitive cell (per electron for
HEG). The second line contains six integers and one energy:

1. Number of moves in the block at which the energy is evaluated (NMOVE).

2. Number of ions.

3. Number of up-spin electrons.

4. Number of down-spin electrons.

5. Periodicity: the number of dimensions in which the system is periodic (0–3).

6. Number of energy terms in file to average (needed by the REBLOCK utility). There are fifteen
energy terms at present (see below).

7. The ion-ion Coulomb interaction energy per ion.

Below these, for each of the moves in the block, rows containing fifteen energy terms are given:

1. Local energy calculated using the 1/r or Ewald Coulomb interaction energy.

2. Total potential energy.

3. KE i. Expectation of the kinetic energy operator (see Section 10.17).

4. T i. (See Section 10.17).

5. F i2. Square modulus of the drift vector (see Section 10.17).

6. Electron-electron interaction energy (1/r, Ewald or MPC).

7. Electron-ion interaction energy.

8. Non-local energy.

9. MPC energy.

10. Short range part of MPC.

11. Long range part of MPC.

12. Electron-ion CPP term.

13. Electron part of CPP term.

14. Electron-electron part of CPP.

15. Average of the local energy calculated with the MPC.

All energies are quoted in Hartrees per primitive cell (per electron for electron phases, per particle
for electron-hole phases). The REBLOCK utility should be used to analyse vmc.hist files and change
energy units if desired. Information about the different components of the energy and how they are
calculated may be found in Sections 10.16–10.20.4.
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7.10 dmc.hist and dmc.hist2 files

The file dmc.hist contains the most important information from a DMC run, while the dmc.hist2 file
contains less important information. There are 13 columns of data in the dmc.hist file

1. Time step counting from the beginning of the run.

2. Number of configurations at this time step.

3. Local energy averaged over the configurations.

4. Reference energy.

5. Best estimate of ground-state energy.

6. Acceptance ratio at this time step.

7. Number of the step within the current block.

8. Block number.

9. Ratio of the number of configurations to the target number.

10. Number of ions.

11. Periodicity: the number of dimensions in which the system is periodic (0–3).

12. Growth estimator of electron energy.

13. Total weight of all configurations [NEW 1/2003].

The dmc.hist2 file contains seventeen columns of data:

1. Configuration average of T i.

2. Configuration average of KE i (= 2×T i − F i2).

3. Configuration average of F i2.

4. Configuration average of local part of potential energy.

5. Configuration average of short range part of MPC energy.

6. Configuration average of long range part of MPC energy.

7. Configuration average of non-local energy.

8. Configuration average of local energy.

9. Configuration average of electron-ion CPP energy.

10. Configuration average of electron CPP energy.

11. Configuration average of electron-electron CPP energy.

12. Average weight of configuration (for branching DMC).

13. Minimum weight of configuration (for branching DMC).

14. Maximum weight of configuration (for branching DMC).

15. Average age of the configurations (number of time steps).

16. Maximum age of a configuration (number of time steps).

17. Effective timestep.

All energies are quoted in Hartrees per primitive cell (per electron for electron phases, per particle
for electron-hole phases). The reblock utility should be used to analyze the dmc.hist and dmc.hist2
files. Information about the different components of the energy and how they are calculated may be
found in Sections 10.16–10.20.4.
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8 Specifying the Slater determinants

8.1 Gaussian basis sets

The file gwfn.data contains the information about the orbitals in the determinant(s). The
gwfn.data file contains the orbitals, which will have been generated by GAUSSIAN94/98/03 or
CRYSTAL95/98/03, and other information is added by the utilities provided in the directory
utils/wfn converters.

The gwfn.data specifies a reference configuration, which may consist of one or more determi-
nants. The input file allows use of either the reference configuration (GS) or to specify excita-
tions/additions/subtractions from GS. If the excitations/additions/subtractions are made to a single
determinant GS configuration then we have to specify SD in the INPUT file and if they are made to
a multi-determinant GS configuration we have to specify MD.

The simplest case is when we want to use exactly the GS configuration specified in gwfn.data. The
INPUT file could then contain:

32 32 ! NEU NED 32 spin up and down electrons
GS ! Ground state calculation as specified in gwfn.data

Excitations/additions/subtractions are using the keywords ‘PR’, ‘PL’ and ‘MI’, respectively. Sev-
eral changes to the GS configuration can be made at once. For example:

32 32 ! NEU NED 32 spin up and down electrons
SD ! Single determinant calculation
DET 1 1 PR 2 1 5 1 ! Promote (PR) electron in determinant

! 1 spin 1 (“up”) band 2 k-point 1, to band 5
! k-point 1 in determinant 1, spin 1 (“up”)

DET 1 2 PL 6 1 ! Add electron spin 2 (“down”) to det 1,
! band 6 k-point 1

DET 1 2 MI 6 1 ! Remove the added electron

Here is an example for a multi-determinant case:

32 32 ! NEU NED 32 spin up and down electrons
MD ! Multi-determinant calculation
3 ! 3 determinants
1d0 ! Determinant 1 prefactor
1d0 ! Determinant 1 prefactor
1d0 ! Determinant 1 prefactor
DET 3 1 PR 2 1 5 1 ! Promotion as examples above

Note that fancier orbital occupation schemes allowing finer control of which orbitals are used
will be introduced shortly, along the lines of the one now used in the case of plane-wave basis sets
[see next section].
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8.2 Plane wave basis

The file pwfn.data specifies the plane wave orbitals used in a CASINO plane wave calculation.
These orbitals are usually generated using a density functional computation and the data file
contains information on the geometry, the k-points, the reciprocal lattice vectors and the expansion
coefficients of Kohn-Sham orbitals for several bands, as well as the corresponding Kohn-Sham energies.

The pwfn.data file typically also contains orbitals that are not, or only partially occupied in the
density functional computation. CASINO being a Monte Carlo program dealing with real electrons
is based on Slater determinants of orbitals containing zero or one electron per spin. The file ’input’
specifies which orbitals of pwfn.data make up the Slater determinant(s) used by CASINO.

8.2.1 The ground state

In many cases one wishes to use a single Slater determinant occupying the lowest lying Kohn-Sham
orbitals. In this case the file ‘input’ might contain

neu : 32
ned : 32

specifying the number of electrons and

%block wavefunction
GS
%endblock wavefunction

GS is not used with any other input token and instructs CASINO to set up a single ground state
determinant according to its in-build defaults (see below). The neu and ned parameters can be varied
independently in units of one from 0 to the maximum number that is consistent with the supplied
Kohn-Sham orbitals. For example

neu : 32
ned : 31

and
%block wavefunction
GS
%endblock wavefunction

yields a 63 electron system. This system is similar to the one above except for an electron hole
(assuming that the underlying neutral system is actually a 64 electron system). Often, the GS keyword
will be all you need. However, if the Kohn-Sham energy that this hole corresponds to appears at several
k-points or bands the ground state occupation is not unique. We have several degenerate possibilities
and CASINO chooses one using its default scheme. Note that such degeneracies can also appear for
a neutral ground state.

8.2.2 Choosing between degenerate ground states

Since degeneracies are not uncommon there are several options for altering CASINO’s defaults to
control the population of orbitals. The token GS allows no further tokens. We have to use

%block wavefunction
SD
GSPEC IP 0.0 0 0 1
%endblock wavefunction
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SD on its own is identical to GS. However, now we can use GSPEC to specify how the ground
state should be populated.
GSPEC
GSPEC is followed by a two letter token (IP, P1, P2, and UP) determining the internal variable POL,
a phase between zero and 2π and three flags (zero or one). IP refers to occupying the up and down
electrons separately until the neu lowest up electrons are occupied and the ned lowest down electrons
too. IP can be replaced by P1/P2 and UP. In these cases CASINO first evaluates the total number of
electrons in the system ntot=neu+ned. It continues to occupy the lowest lying orbitals. In the case
of degeneracies it aims to

P1: occupy as many up electrons as possible.

P2: occupy as many down electrons as possible.

UP: align the number of occupied electrons as closely as possible with neu and ned.

The phase specified by GSPEC is the default value used instead of the built in default. The three
following flags are

DIR If set to one the orbitals will be occupied from first to last used k-point as they appear in
pwfn.data, and reverse if set to zero.

SPR If set to one CASINO attempts to spread the occupied orbitals over several k-points, and over
as few as possible if set to zero.

SPRBND Same as SPR except that now the focus is on different bands at the same k-point.

These flags obviously only take effect if the highest occupied energy levels are not all occupied, i.e.,
if there are degeneracies. In that case GSPEC can be used efficiently to generate different occupation
schemes without using any promotions (see below).

8.2.3 Multi-determinant calculations

In a multiple determinant calculation, i.e., using MD instead of SD followed by the number of
determinants and their relative weights

%block wavefunction
MD
3
0.5
0.7
0.3
GSPEC IP 0.0 0 0 1
%endblock wavefunction

GSPEC sets the default values for all determinants. If it is omitted CASINO uses built in defaults.
DPSEC can then be used instead of GSPEC if the user wishes to set flags only for a specific
determinant. The syntax is equivalent to GSPEC except for two integers in the place of the two letter
token. These are ISPIN and IDET. ISPIN may be 1 or 2 referring to up and down spin determinants
and IDET can take an integer value from one to the maximum set by MD, i.e

DSPEC 1 2 0.0 0 0 1

sets the phase, DIR, SPR, and SPRBND for the up-electron sub-determinant in determinant number
2. In addition, the value for POL can be specified by using the line
POL token ALL
or
POL token number
where token can be chosen from IP, P1, P2, and UP. Using ALL results in POL being set for all
determinants. Using a number instead means POL will only be set for the determinant given by the
number.
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The occupation of orbitals can be further modified by using the the specifier EPOL:

EPOL -0.32800768 ALL

or
POL -0.32800768 number
EPOL temporarily lowers the energy eigenvalues of the down electron Kohn-Sham eigenvalues by an
amount given by the real number that follows the token. In effect it biases the occupation scheme
and can be used to generate strongly spin polarized systems.

If the use of EPOL (or any other flag) leads to the number of spin-up and spin-down electrons not
being equal to neu and ned CASINO stops and prints out the number of electrons to which neu and
ned have to be set.

8.2.4 Phases

Why phases? We know that for many, but not all orbitals we can extract two real orbitals (the real
and the imaginary part of a complex orbital) that we can use to build a determinant. In some cases
we might only use one of the two. We could use the real or the imaginary part, however, we could also
use some linear combination of the two. It is possible to achieve this by using a multiple determinant
calculation, one involving the real part and one involving the imaginary part in conjunction with
an appropriate weighting of the determinants. Since one determinant is more efficient than several
CASINO allows the specification of phases to choose the linear combination of real and imaginary
part, see Section 10.12.

GSEPC and DSPEC modify the phases for a whole determinant. ASINGLE modifies the phase
of a single orbital. ASINGLE is followed by a phase between zero and 2π, followed by a spin, a
determinant, a k-point and a band index, i.e.,

ASINGLE 0.5 2 3 2 2

sets the phase to 0.5 for the orbital at k-point 2, band 2 in the 3rd determinant for the down
spin electrons. This is independent of whether this orbital is actually used. The phases are speci-
fied in multiples of π. The units for the phases can be altered using UNITA followed by a real number:

UNITA 1.0

Now setting a phase to 1
2π as in the example above has to be down using

ASINGLE 1.570796327 2 3 2 2

Instead of setting the phases for single orbitals it is possible to set phases for an entire block using ABL:

ABL 0.5 2 3 1 1 2 2

This command has the same effect as the ASINGLE instruction above except that the the last four
numbers refer to the minimum k-point and minimum band index and the maximum k-point and
maximum band index of the block, in this order.

8.2.5 Promotions

GSPEC, DPSEC, POL and EPOL are very flexible, however, using a few flags is unlikely to cover all
possible occupations of the given orbitals, so once the number of electrons has been set, promotions
can be used to generate any possible occupation scheme. The syntax is

DET idet ispin PR bfrom kfrom bto kto
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ispin and idet determining which determinant and spin are being dealt with. bfrom and kfrom refer
to the band and k-point of the electron that is to be moved, bto and kto are the positions the electron
is to be moved to.

Promotions my be combined with setting phases by using
DET idet ispin PRA bfrom kfrom phfrom bto kto phto
If applicable, phfrom is the phase to be used for the electron remaining at bfrom and kfrom and phto
is the phase of the target orbital, e.g.
DET 1 3 PRA 4 3 0.2 4 4 0.2

8.2.6 Defaults

No values except the number of up and down electrons have to be specified. The CASINO defaults
for all determinant are

POL = −1
DIR = SPR = SPRBND = 1 (i.e., true)
UNITA = π
EPOL = 0.0
All phases are set to 0.0.

8.3 Blip and spline basis

Note that the setup for the blip function module and the spline function module has not yet been
fully merged with the plane wave setup routines, so that one cannot currently use the fancy orbital
occupation schemes, excited states, or multi-determinant wave functions with blip or spline orbitals.
This functionality will almost certainly be included shortly (or even sooner if someone specifically
requests it).
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9 Pseudocode

9.1 Subroutine VMC

Loop over blocks of time steps.
Loop over time steps.

Loop over configurations.
Loop over electron in configuration.

- Calculate local energy at Rold, if required.
- Propose move of electron.
- Calculate ratio Ψ(Rnew)/Ψ(Rold).
- Calculate local energy at Rnew, if required.
- Perform Metropolis accept/reject step.
- If move is accepted update cofactor matrix and determinant.
- Accumulate local energy etc., if required.

End loop over electrons in configuration.
End loop over configurations.

End loop over time steps.
End loop over blocks of time steps.

9.2 Subroutine DMC

Loop over blocks of time steps.
Loop over moves in a block.

Loop over configurations.
Loop over electrons in configuration.

- Evaluate drift vector at old position. Use one of various schemes
to evaluate corresponding limited vector.
- Evaluate diffusive component of the electron displacement.
- Generate new position of electron (using limited drift vector).
- If crossed node then reject move of this electron.
- Evaluate drift vector at new position. Use one of various schemes
to evaluate corresponding limited vector.
- Use limited drift velocities to calculate Metropolis acceptance probability
for proposed electron move. Decide whether or not move is accepted.
- Evaluate components of limited electron energy at whichever
position (old or new) that it ends up at.

End loop over electrons in configuration.
- Evaluate local energy of the new configuration and the limited energy
- Calculate branching factor for new configuration and so determine
the number of configurations that proceed to next generation at
point in phase space occupied by this configuration. Use the
limited energy for evaluating the branching factor.

End loop over configurations.
- Update best estimate of energy.
- Update reference energy.

End loop over moves in a block.
End loop over blocks of time steps.
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10 Theoretical background

10.1 The trial wave function

Throughout this section we assume the trial wave function is of the Slater-Jastrow form

ψT (R) = exp(J(R))D↑(r1, . . . , rN↑)D↓(rN↑+1, . . . , rN ), (1)

where R = (r1, . . . , rN ) is a point in the configuration space of the N -electron system, J is the
Jastrow function and D↑ and D↓ are Slater determinants of orbitals of spin-up and spin-down electrons
respectively. See reference [23] for further information.

10.2 The variational Monte Carlo method

10.2.1 Evaluating expectation values

The expectation value of the Hamiltonian Ĥ with respect to the trial wave function ψT can be written
as

〈Ĥ〉 =
∫
EL(R)ψ2

T (R) dR∫
ψ2

T (R) dR
, (2)

where EL(R) = ψ−1
T (R)Ĥ(R)ψT (R) is the local energy.

We can evaluate this expectation value by using the Metropolis algorithm [18] to generate a
sequence of configurations R distributed according to ψ2

T (R) and averaging the corresponding local
energies.

10.2.2 The electron-by-electron algorithm

The implementation of VMC in CASINO involves repeatedly sweeping through the set of electrons,
making a trial move of each in turn and accepting or rejecting the move in accordance with the
Metropolis algorithm. The Metropolis transition probability density is Gaussian of variance τ , where
τ is the VMC timestep (DTVMC).

In the “standard” Metropolis algorithm quantities to be averaged are evaluated at the end of each
configuration move (that is, after all the electrons have attempted to move). However, quantities may
be evaluated after each individual electron move so long as care is taken to ensure that, for a randomly
chosen step, the probability of arriving at a particular configuration R having just attempted to move
a particular electron i is

pi(R) = ψ2
T (R)/N. (3)

Calculating quantities in this way has the advantage that we can average over those trial electron
moves that are rejected. Suppose for a particular electron move the probability of acceptance is
pacc and the energies9 of the electron in the existing10 and proposed configurations are εold and
εnew respectively. Then, irrespective of whether or not the move is accepted, we can evaluate the
contribution to the average from this particular electron as

ε = (1− pacc) εold + paccεnew. (4)

Calculating quantities using Equation 4 allows the contribution of configurations with high energies
but low probabilities (such as when two electrons come close together) to be more readily included
in averages: fluctuations in the system energy caused by the occasional acceptance of such unlikely
configurations are reduced, decreasing the error bars on the estimated quantities [19].

On the other hand, in the limit of perfect importance sampling (that is, where the trial wave
function is exact and so the local energy is constant in configuration space), the “standard” Metropolis

9By the energy of an electron we mean the sum of its kinetic energy, electron-ion potential energy and half the sum
of its electron-electron interaction energy. Summing these over all electrons we get the total energy of the configuration.

10Note that an electron energy in the “existing” configuration is not the same as the electron’s energy at the end of
the previous sweep: some of the other electrons will almost certainly have been moved in the intervening period. Only
the electron-ion component of energy (ignoring core-polarization effects in pseudoatoms) will be the same.
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algorithm gives the correct result with zero variance. Evaluating the electron energies as we sweep
through the set gives a result with non-zero variance because each time an electron energy is evaluated,
we will (if the electron move is accepted) change the energies that the preceding electrons should have
in the resulting configuration.

In summary, better trial wave functions favour the standard Metropolis method.
In addition, if the electron energies are very expensive to evaluate then it may be preferable to

evaluate them once per electron at the end of the configuration move rather than twice per electron,
as required for use with Equation 4.

We refer to the standard Metropolis procedure as method 1 and the method in which quan-
tities are calculated during the sweep as method 2. Both methods are available in CASINO: the
VMC METHOD input parameter selects which is to be used.

The local energy does not have to be calculated every configuration move. In particular, energies
are not calculated during the first NEQUIL moves of a VMC simulation when the Metropolis algorithm
has yet to reach its equilibrium. Furthermore, because the configurations are serially correlated, the
expense of calculating the energy at every configuration move is unjustified: it is more efficient to
calculate the energy once every CORPER moves, where typically the input parameter CORPER
might be 4 or 5.

Note that it is not necessary to write out every local energy calculated. NVMCAVE successive
energies can be averaged over before being written out to vmc.hist: this helps ensure that the
vmc.hist file is not excessively large when accurate calculations are carried out. Furthermore, on
parallel machines, the local energies computed on each processor node are averaged over before being
written out.

The input parameter NMOVE gives the number of energies written out to the vmc.hist file in
one “block” of moves. Thus, for a single processor and single block of moves, the total number of
configuration moves made is in fact NMOVE×NVMCAVE×CORPER.

10.2.3 Two-level sampling

The Metropolis acceptance probability for a move from R′ to R in the standard algorithm is

p(R← R′) = min
{

1,
ψ2

T (R)
ψ2

T (R′)

}
= min

{
1,

D2
↑(R)D2

↓(R) exp(2J(R))
D2
↑(R′)D2

↓(R′) exp(2J(R′))

}
. (5)

It is straightforward to show that if detailed balance [23] in configuration space is satisfied then the
resulting ensemble of configurations will be distributed according to the square of the trial wave
function.

However, CASINO employs a two-level sampling algorithm, which has been shown to be considerably
more efficient [21].

Let us define the first-level acceptance probability

p1(R← R′) = min

{
1,

D2
↑(R)D2

↓(R)
D2
↑(R′)D2

↓(R′)

}
(6)

and the second-level acceptance probability

p2(R← R′) = min
{

1,
exp(2J(R))
exp(2J(R′))

}
. (7)

In the two-level algorithm we accept trial moves from R′ to R with probability p1(R ← R′)p2(R ←
R′). It can be shown that, provided detailed balance in configuration space is satisfied, this procedure
also results in an ensemble of configurations distributed according to the square of the trial wave
function.

The two-level approach is computationally advantageous because the Metropolis accept/reject step
can be carried out in two stages: if the “first level” is accepted (with probability p1) then we compute
the Jastrow functions of the new and old configurations and determine whether the “second level” is
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accepted (with probability p2). Thus, if a move is rejected at the first level then we do not have to
compute the Jastrow functions for the new and old configuration11.

It is unclear how two-level sampling should be applied in the context of VMC method 2 since we do
not know the full acceptance probability for the trial electron move if the move is rejected at the first
level. Therefore, when VMC METHOD is 2, single-level sampling is used for those moves on which
electron energies are calculated (with p1p2 being the acceptance probability); two-level sampling is
used elsewhere.

10.2.4 The optimal value of the VMC timestep

The VMC timestep DTVMC should be chosen such that the correlation period (as determined by
reblocking analysis) of the resulting configuration local energies is minimized. For large timesteps the
move rejection probability is high which obviously leads to serial correlation. On the other hand, for
low timesteps the configuration does not move very far at a given step, and so serial correlation is
again large.

A rule of thumb for choosing an appropriate DTVMC is that the average acceptance probability
should be about 1/2. The average acceptance probability converges very rapidly to its final value;
hence by making a couple of extremely short trial VMC runs, it is easy to find an appropriate
value for DTVMC. If you use at least 500 steps in the VMC equilibration phase, then CASINO will
automatically optimize the VMC time step if you set the keyword OPT DTVMC to 1.

10.2.5 Automatic DTVMC optimization

Optimization of DTVMC to achieve an acceptance ratio of (roughly) 50% is performed in CASINO by
means of linear inter/extrapolation of two consecutive trial pairs of values (log(DTVMC), Acc.Ratio).
As we are dealing with random electronic configurations, these numbers are subjected to fluctuations,
due to which divergences (i.e., vertical lines arising from the interpolation) are bound to appear near
the solution. In order to avoid these, for any two consecutive DTVMC values that are too close from
each other, the next trial point is chosen depending only on the last one. Also, for acceptance ratios
too far away from 50% the function becomes irregular, so a similar method is used.

There are some remarks that must be made regarding the optimum value of DTVMC, the most
important one being that the appropriate way to determine it is by minimizing the correlation time
of the energy of the electronic configurations. Nevertheless, it is found in practice that taking the
acceptance ratio to 50% yields almost the same results, but with the advantage of being much faster
to compute, because the energy is not calculated, and can thus be implemented into the equilibration
process.

A second remark is that DTVMC can be regarded as a length (it measures the width of the
probability distribution that is sampled to move the particles at every step), and as such, is connected
with a characteristic length of the system, which can be influenced by its size, density, etc. For
example, for low densities, it is found that the optimized DTVMC is much larger than those that
one gets used to seeing; what happens is that the distribution flattens into a constant (or almost so)
so that the electrons can move to a random place in the simulation box (not only within a small
environment of their previous positions), hence better significance (decorrelation) in the sampling of
the desired observables is achieved.

The last comment is that the procedure of optimization has not been proven infallible for all initial
values or extreme conditions, such as systems in which the small number of particles might prevent
gathering of good statistics for the interpolation. Nor is it the case that there is an analytic connection
of the acceptance ratio being 50% with the minimization of the correlation time. However, test cases
show that the technique works and is useful, specially when tackling a new system for the first time.

10.3 The diffusion Monte Carlo method

See, e.g., references [22] and [23] for general information about DMC. Here we present some more
detailed information about the implementation of DMC within CASINO. Our algorithm follows that of

11It is better to use the Slater wave function to compute the first-level acceptance probability because p1 is much
lower (in general) than the corresponding acceptance probability for the Jastrow part (p2); hence we are less likely to
need to compute the second level acceptance probability than if the situation were reversed.
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Umrigar, Nightingale, and Runge [5] (referred to simply as UNR), with some additional developments
due to Umrigar and Filippi [7].

10.3.1 Imaginary-time propagation

Let R be a point in the configuration space of an N -electron system. The importance-sampled DMC
method propagates the distribution f(R, t) = Ψ(R)Φ(R, t) in imaginary time t, where Ψ is the trial
wave function and Φ is the DMC wave function. The importance-sampled imaginary-time Schrödinger
equation may be written in integral form,

f(R, t) =
∫
G(R← R′, t− t′)f(R′, t′) dR′ , (8)

where the Green’s function G(R← R′, t− t′) satisfies the initial condition

G(R← R′, 0) = δ(R−R′) . (9)

The Green’s function used in DMC is an approximation to the exact form which is accurate for short
time steps, τ = t− t′ (DTDMC),

GDMC(R← R′, τ) = GD(R← R′, τ)GB(R← R′, τ) , (10)

where

GD(R← R′, τ) =
1

(2πτ)3N/2
exp

(
− (R−R′ − τV(R′))2

2τ

)
(11)

is the drift-diffusion Green’s function and

GB(R← R′, τ) = exp
(
−τ

2
[EL(R) + EL(R′)− 2ET ]

)
(12)

is the branching Green’s function. ET is the reference energy, which acts as a renormalization factor,
see Section 10.5. EL is the local energy,

EL(R) = Ψ−1ĤΨ, (13)

where Ĥ is the Hamiltonian, and V is the drift vector,

V(R) = Ψ−1∇Ψ. (14)

Note that V = (v1, . . . ,vN ), where vi is the drift vector of electron i.

10.3.2 The ensemble of configurations

The f distribution is represented by an ensemble of electron configurations which are propagated
according to rules derived from the Green’s function of Eq. 10. GD represents a drift-diffusion process
while GB represents a branching process. The branching process leads to fluctuations in the population
of configurations and/or fluctuations in their weights.

We will introduce labels for the different configurations α present at each time step m. From now
on R represents the electronic positions of a particular configuration in the ensemble, and i labels a
particular electron.

In CASINO electrons are moved one at a time. This is much more efficient than making whole
configuration moves for large systems. This is standard procedure for large systems, but most of the
algorithms described in the literature are for moving all electrons at once.

10.4 Drift and diffusion

We now discuss the practical implementation of the drift-diffusion process using the electron-by-
electron algorithm in which electrons are moved one at a time, as used in CASINO.

To implement the drift-diffusion step, each electron i in each configuration α is moved from r′i(α)
to ri(α) in turn according to
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ri = r′i + χ+ τvi(r1, . . . , ri−1, r′i, . . . , r
′
N ), (15)

where χ is a three-dimensional vector of normally distributed numbers with variance τ and zero mean.
vi(R) denotes those components of the total drift vector V(R) due to electron i.

Hence each electron i is moved from r′i to ri with a transition probability density of

ti(r1, . . . , ri−1, ri ← r′i, r
′
i+1, . . . , r

′
N ) =

1
(2πτ)3/2

exp
(

(ri − r′i − τvi(r1, . . . , ri−1, r′i, . . . , r
′
N ))2

2τ

)
.

(16)
For a complete sweep through the set of electrons, the transition probability density for a move

from R′ = (r′1, . . . , r
′
N ) to R = (r1, . . . , rN ) is simply the probability that each electron i moves from

r′i to ri. So the transition probability density for the configuration move is

T (R← R′) =
N∏

i=1

ti(r1, . . . , ri−1, ri ← r′i, r
′
i+1, . . . , r

′
N ). (17)

In the limit of small timesteps, the drift velocity V is constant over the (small) configuration move.
Evaluating the product in this case, we find that the transition probability density is

T (R← R′) = GD(R← R′, τ), (18)

so that the drift-diffusion process is described by the drift-diffusion Green’s function GD.
At finite timesteps, however, the approximation that the drift velocity is constant leads to the

violation of the detailed balance condition.
We may enforce the detailed balance condition on the DMC Green’s function by means of a

Metropolis-style accept/reject step introduced by Ceperley et al [33]. This has been shown to greatly
reduce timestep errors [4]. The move of the ith electron of a configuration is accepted with probability

min
{

1,
ti(r1, . . . , ri−1, r′i ← ri, r′i+1, . . . , r

′
N )ψ2

T (r1, . . . , ri, r′i+1, . . . , r
′
N )

ti(r1, . . . , ri−1, ri ← r′i, r
′
i+1, . . . , r

′
N )ψ2

T (r1, . . . , ri−1, r′i, . . . , r
′
N )

}
= min

{
1, exp

[ (
r′i − ri +

τ

2
(vi(r1, . . . , ri−1, r′i, . . . , r

′
N )− vi(r1, . . . , ri, r′i+1, . . . , r

′
N )
)

·
(
vi(r1, . . . , ri−1, r′i, . . . , r

′
N ) + vi(r1, . . . , ri, r′i+1, . . . , r

′
N )
) ]

×
ψ2

T (r1, . . . , ri, r′i+1, . . . , r
′
N )

ψ2
T (r1, . . . , ri−1, r′i, . . . , r

′
N )

}
≡ ai(r1, . . . , ri−1, ri ← r′i, r

′
i+1, . . . , r

′
N ). (19)

This leads to the single-electron detailed balance condition

si(r1, . . . , ri−1, ri ← r′i, r
′
i+1, . . . , r

′
N )ψ2

T (r1, . . . , ri−1, r′i, . . . , r
′
N )

= si(r1, . . . , ri−1, r′i ← ri, r′i+1, . . . , r
′
N )ψ2

T (r1, . . . , ri, r′i+1, . . . , r
′
N ),

(20)

where

si(r1, . . . , ri−1, ri ← r′i, r
′
i+1, . . . , r

′
N ) = ai(r1, . . . , ri−1, ri ← r′i, r

′
i+1, . . . , r

′
N )

×ti(r1, . . . , ri−1, ri ← r′i, r
′
i+1, . . . , r

′
N ), (21)

is the effective single-electron transition probability density, once the accept/reject step has been
introduced.

Hence we find that the effective transition probability density for the entire configuration move
satisfies
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S(R← R′) =
N∏

i=1

si(r1, . . . , ri−1, ri ← r′i, r
′
i+1, . . . , r

′
N )

=
N∏

i=1

si(r1, . . . , ri−1, r′i ← ri, r′i+1, . . . , r
′
N )
ψ2

T (r1, . . . , ri, r′i+1, . . . , r
′
N )

ψ2
T (r1, . . . , ri−1, r′i, . . . , r

′
N )

= S(R′ ← R)
ψ2

T (R)
ψ2

T (R′)
(22)

And so detailed balance in configuration space is satisfied.
It is more efficient to use an electron-by-electron algorithm than the (perhaps more straightforward)

configuration-by-configuration algorithm in which moves of entire configurations are proposed and then
accepted or rejected. This is because, for a given timestep, a configuration will travel further on average
if the accept/reject step is carried out for each electron in turn. For example, it is clear that it is very
unlikely for a configuration not to be moved at all in an electron-by-electron algorithm. Hence the
sampling of configuration space in an electron-by-electron algorithm is more efficient.

After each move of each electron we check whether the configuration has crossed the nodal surface
(by checking the sign of the Slater part of the trial wave function). If it has then the move is rejected.
This has been found to be the least-biased method of imposing the fixed-node approximation [23].

10.5 Branching and population control

The branching Green’s function can be implemented by altering the population of configurations
and/or their weights. At the start of the calculation one chooses a target population, M0, and the
actual population Mtot(m) (see Eq. 27) is controlled so that it does not deviate too much from M0.
The population control is principally exerted by altering the reference energy, ET (m). Large changes
in ET can lead to a bias and therefore it is varied smoothly over the simulation.

For each move of all the electrons in configuration α the branching factor is calculated as:

Mb(α,m) = exp
[(
−1

2
{
S(Rα,m) + S(R′

α,m)
}

+ ET (m)
)
τeff(α,m)

]
(23)

where τeff is the effective time step for configuration α at time step m (see Section 10.6), S is the local
energy (we denote it by S because it is usually a modified version of EL, see Section 10.6). Unless
weighted DMC is used (i.e., unless LWDMC=.TRUE.), the number of copies of this configuration
that continue to the next time step is given by:

M(α,m) = INT{η +Mb(α,m)}, (24)

where η is a random number drawn from a uniform distribution on the interval [0,1].
In weighted DMC, each configuration carries a weight that is simply multiplied by Mb(α,m) after

each move; only if the weight of a configuration goes outside certain bounds (currently above 2 or
below 0.5) is it allowed to branch or be combined with another configuration.

Throughout this section we denote the best estimate of the ground-state energy at time step α by
Ebest(m). At the start of a DMC run we set Ebest(0) = ET (0) = EV, where EV is the average local
energy of the initial configurations. During equilibration Ebest is updated after each block of moves
as:

Ebest(m) =
3
4
Eblock +

1
4
Ebest(m− 1). (25)

At the end of each block various book-keeping tasks are performed, i.e., in VMC data is written to
file at the end of each block and in DMC data is written out, the population may be renormalized
(POPRENORM) and Ebest is updated during equilibration. ET is updated after every time step as

ET (m+ 1) = Ebest(m)− g−1

τEFF(m)
log
(
Mtot(m)
M0

)
, (26)
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where g−1 = min{1, τcET
}, cET

is a constant which must be set in the INPUT file (CEREFDMC),
but is usually set equal to one, M0 = NCONFIG×NNODES is the target number of configurations,
and

Mtot(m) =
Nconfig(m)∑

α=1

wα(m), (27)

where Nconfig(m) is the number of configurations and wα is the weight of configuration α. Note that
Ebest(m) is the best energy at time step m while ET (m + 1) is the trial energy to be used in the
next time step. τEFF is the current best estimate over all configurations and time steps of the mean
effective time step, calculated using Eq. 54 with Â = τeff(α,m). Note that g is the time scale (in terms
of time steps) over which the population attempts to return to M0. During accumulation Ebest is set
equal to the current value of the mixed estimator of the energy, given by Eq. 54, with Â = EL(α,m).

To further limit the size of population fluctuations, the population can be renormalized to M0

at the start of each block (POPRENORM). This should not be necessary, however, and should be
avoided if at all possible as it can lead to large time step errors.

10.6 Modifications to the Green’s Function

10.6.1 The effective time step

Time-step errors can be reduced and the stability of the DMC algorithm improved by modifying the
Green’s function. An important modification is to introduce an effective time step, τeff , into the
branching factor [4]. When the accept/reject step is included, the mean distance diffused by each
electron each move (which should go as the square root of the time step) is reduced because some
moves are rejected. When calculating branching factors it is therefore more accurate to use a time
step appropriate for the actual distance diffused. Umrigar and Filippi [7] have suggested using an
effective time step for each configuration at each time step. This helps to eliminate the problem of
“persistent” configurations, which are low energy configurations for which all moves are rejected, and
which can multiply and bias the calculation. The effective time step is given by

τeff(α,m) = τ

∑
i pi∆r2d,i∑
i ∆r2d,i

, (28)

where the averages are over all attempted moves of the electrons i in configuration α at time step
m. The ∆rd,i are the diffusive displacements (i.e., the distance travelled by the electrons without the
drift-displacement, see Eq. 15) and pi is the acceptance probability of the electron move, see Eq. 19.
The values averaged over the current run are written in the output file.

We calculate τEFF(m) using Eq. 54 with Â ≡ τeff(α,m).

10.6.2 Drift vector and local energy limiting

The drift vector diverges at the nodal surface and a configuration which approaches a node can exhibit
a very large drift, resulting in an excessively large move in the configuration space. One can improve
the Green’s function by cutting off the drift vector when its magnitude becomes large. The total drift
vector is defined in Eq. 14.

We use the smoothly cut-off drift vector suggested by UNR [5]. For each electron with drift vector
vi, we define the smoothly cut-off drift vector ṽi, where:

ṽi =
−1 +

√
1 + 2a|vi|2τ
a|vi|2τ

vi , (29)

where a is a constant which can be chosen to minimize the bias (in UNR [5] a value of a = 1/4
was suggested for all-electron calculations, but a = 1 may be more appropriate for pseudopotential
calculations). The value of a = ALIMIT must be entered by the user if NUCLEUS GF MODS is set
to false; otherwise a will be calculated as described in Section 10.7.

In the UNR [5] scheme the modified local energy, S(α,m), is given by

S(α,m) = Ebest(m)− [Ebest(m)− EL(α,m)]
|Ṽ|
|V|

, (30)
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where Ṽ(α,m) = (ṽ1, . . . , ṽN ). Note that we define S slightly differently from Ref. [5]. S is used only
in the branching factor and when evaluating the average energy we sum the unlimited local energies,
EL.

Finally, a very simple option is simply to cut-off the local energy drift vector when their magnitudes
becomes large using the method of Depasquale et al. [8],

S(R) = EV + sign[2/
√
τ , EL(R)− EV] for |EL(R)− EV| > 2/

√
τ

ṽi(R) = sign[1/τ,vi] for |vi| > 1/τ . (31)

In the paper of Depasquale et al. [8] they recommend using the variational energy for EV, but we use
the best estimate of the energy. We prefer the UNR scheme.

10.6.3 Theoretical background to the UNR limiting scheme for the drift velocity

Recall the approximation that the drift velocity remains constant over a configuration move. Unfor-
tunately, the drift velocity varies rapidly as it diverges near the nodes. UNR suggest, therefore, that
the Green’s function for the drift process should be calculated on the assumption that ∇ψT , rather
than V = ψ−1

T ∇ψT , is constant over a configuration move when close to the nodal surface [5].
Consider the drift of a single electron in a single configuration in the electron-by-electron DMC

algorithm. Let the electron have position vector ri(t) as it drifts, with all other electrons fixed
at positions {rj}j 6=i. Consider the case where the configuration is close to the nodal surface
and ∇iψT (R) is nonzero at the surface12. Then ri(t) must be close to a point si such that
ψT (r1, . . . , ri−1, si, ri+1, . . . , rN ) = 0. So we can write

ψT (r1, . . . , ri−1, ri(t), ri+1, . . . , rN ) ≈ ∇iψT (r1, . . . , ri−1, si, ri+1, . . . , rN ) · (ri(t)− si)
= Ar⊥i (t), (32)

where A = |∇iψT (r1, . . . , ri−1, si, ri+1, . . . , rN )| is a constant over the move and r⊥i (t) is the component
of ri(t)− si in the direction of ∇iψT (r1, . . . , ri−1, si, ri+1, . . . , rN ).

The equation of motion for the single-electron drift process is

dri(t)
dt

= vi(r1, . . . , ri−1, ri(t), ri+1, . . . , rN ) = vi(t)

=
∇iψT

ψT
≈ r⊥i

(r⊥i (t))2
. (33)

Hence

vi(t) =
dr⊥i (t)
dt

=
1

r⊥i (t)
. (34)

Integrating this over one timestep, from time t to t+ τ , we find that

r⊥i (t+ τ)− r⊥i (t) ≈
√

(r⊥i (t))2 + 2τ − r⊥i (t) ≡ v̄i(t)τ, (35)

where the magnitude of the limited drift velocity is given by

v̄i(t) =

√
(r⊥i (t))2 + 2τ − r⊥i (t)

τ

=
−1 +

√
1 + 2τ/(r⊥i (t))2

τ/r⊥i (t)
=
−1 +

√
1 + 2v2

i (t)τ
vi(t)τ

. (36)

So, finally, the limited drift velocity is written as
12If ∇iψT (R) = 0 at the nodal surface then the drift velocity of electron i will be constant close to the nodal surface,

rather than divergent.
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v̄i(t) =
−1 +

√
1 + 2av2

i (t)τ
av2

i (t)τ
vi(t), (37)

where the parameter a has been introduced such that a = 1 corresponds to the solution close to
the node and the limit a → 0 corresponds to the “normal” solution, with v̄i = vi. a can be made
position-dependent in a fashion that (roughly) distinguishes between the drift velocity being large
due to proximity to a node and proximity to a nucleus. This is described in Section 10.7. However,
because the dependence on a is very weak, we can simply choose a constant value of a ∈ (0, 1] (see
Section 10.6.2) if bare nuclei are not present.

Note that the limited velocity is only substantially different from the unlimited velocity when the
magnitude of the latter is large (compared to 1/

√
2aτ). Also, the magnitude of the limited velocity

is always less than the unlimited velocity. So Equation 37 is indeed a limiting scheme for the single-
electron drift velocity.

By proposing electron moves using the limited drift velocity, we may improve upon the short-time
approximation, since the variation of the drift velocity over moves close to nodes is taken into account.
Furthermore, although the unlimited velocity diverges as the node is approached, the limited velocity
remains bounded; it tends to

√
2/aτ . Thus the various pathologies caused by the divergent drift

velocity are ameliorated.

10.6.4 Theoretical background to the UNR limiting scheme for the local energy

Although CASINO uses an electron-by-electron DMC algorithm, the derivation below is given in
the context of an entire configuration move. When close to the nodal surface, the limited energy is
calculated as the average of the local energy over a configuration drift starting from the configuration’s
final position. This gives a limited local energy that remains bounded as the node is approached and
is physically sensible for computing the branching factor, albeit approximate.

Consider the average value of the local energy over a configuration drift to R(t+τ) from R(t) ≡ R
close to a node:

ĒL(R) =
1
τ

∫ t+τ

t

EL(R(t′)) dt′

= Ebest +
1
τ

∫ t+τ

t

[EL(R(t′))− Ebest] dt′ (38)

where Ebest is the current best DMC estimate of the ground state energy.
The divergence in the local energy close to a node can be written as

EL(R) = ψ−1
T (R)ĤψT (R) = Ebest +

B

R⊥
= Ebest +BV (R), (39)

where B is a constant and R⊥ is the distance of point R from the nearby nodal surface. Note that
by the same arguments as in the single electron case, the full drift velocity is approximately given by
V (R) = 1/R⊥.

So we find that

ĒL(R) = Ebest +
B

τ

∫ t+τ

t

V (R(t′)) dt′

= Ebest +
B

τ
(R⊥(t+ τ)−R⊥(t))

= Ebest +BV̄ (R)

= Ebest + [EL(R)− Ebest]
V̄ (R)
V (R)

. (40)

ĒL reduces to EL when the drift velocity is small, away from nodes and nuclei. In addition, ĒL is
always closer to Ebest than EL. Hence Equation 40 is a formula for limiting the local energy.
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Since both the drift velocity and the local energy diverge as 1/R⊥, the limited local energy ĒL

remains finite as the node is approached.
In practice, even though the local energy is calculated at the end of the configuration move, the

limiting scheme of Section 10.6.3 is applied to the individual single electron drift velocities. The ratio
of drift velocities is therefore calculated as

V̄ (R)
V (R)

=

(
v̄2
1(R) + . . .+ v̄2

N (R)
)1/2

V (R)
. (41)

The limited single electron drift velocities are calculated at the same time as the local energy of
the configuration, after all of the electron positions in the configuration have been updated.

10.7 Modifications to the DMC Green’s function at bare nuclei

10.7.1 Modifications to the limiting of the drift velocity

The limiting of the drift velocity is intended to remove the divergence at the nodal surface; interference
with the cusps at bare nuclei is an undesirable side-effect, which may introduce bias. In order to
distinguish between nodes and nuclei, UNR make the a-parameter in their limiting scheme dependent
on electron position. Immediately before the limited drift velocity of an electron at r′ is calculated, a
is evaluated as

a(r′) =
1
2

(1 + v̂ · ez) +
Z2z2

10(4 + Z2z2)
, (42)

where v̂ is the unit vector in the direction of the unlimited drift velocity, ez is the unit vector from
the closest bare nucleus to the electron, z is the distance of the electron from the nucleus, and Z is
the atomic number. This formula makes a small (and hence the limiting weak) if the electron is both
close to the nearest nucleus and drifting towards it.

10.7.2 Preventing electrons from overshooting nuclei

In its immediate vicinity, the single-electron drift velocity is always directed towards a bare nucleus.
Therefore, drifting particles should never cross the nucleus; rather, they should end up on top of it.

In order to impose this condition at finite timesteps, we work in cylindrical polar coordinates with
the z-axis lying along the line from the nucleus to the electron. Let the position of the closest nucleus
be RZ .

The position of the electron relative to the nucleus is

r′ −RZ = z′ez, (43)

while the limited drift velocity can be resolved as

v̄ = v̄zez + v̄ρeρ, (44)

where eρ is a unit vector orthogonal to ez.
The new z-coordinate after drifting for one timestep is

z′′ = max{z′ + v̄zτ, 0}, (45)

which cannot lie beyond the nucleus.
The drift in the radial direction over one timestep is

ρ′′ =
2v̄ρτz

′′

z′ + z′′
. (46)

The new radial coordinate is approximately v̄ρτ when far from the nucleus, but it is forced to go
to zero as the nucleus is approached. Hence, if the electron attempts to overshoot the nucleus, it will
end up on top of it. So timestep errors caused by drifting across nuclei are eliminated.

Let the electron position at the end of the drift process be r′′ = z′′ez + ρ′′eρ.
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10.7.3 Diffusion close to a bare nucleus

Close to a nucleus, f is proportional to the square of the hydrogenic 1s orbital (assuming the trial
wavefunction has the correct behaviour). This cusp cannot be reproduced by Gaussian diffusion at
finite timesteps. In fact, starting from the nucleus, we would like our electron to take a random step
w distributed according to exp(−2Z|w|).

However, we only want to diffuse in this fashion when the electron is likely to cross the nucleus. Let
Π be the plane with normal ez that contains the nucleus. For the usual Gaussian diffusion process,
the probability that an electron drifts (assuming that nuclear overshoot is permitted) and diffuses
across Π, is

q̃ = 1− p̃ =
1
2

erfc
(
z + v̄zτ√

2τ

)
. (47)

So, with probability p̃, we sample w from

g1(w) = (2πτ)−3/2 exp
(
−|w|

2

2τ

)
, (48)

and set the new electron position to be r = r′′ + w; otherwise, we sample13 w from

g2(w) =
ζ3

π
exp(−2ζ|w|), (49)

and set r = RZ + w. We have defined ζ by

ζ =

√
Z2 +

1
τ
, (50)

which reduces to Z for large timesteps, giving the desired cusp; however, this choice of ζ causes the
second moments of g1 and g2 to be equal to O(τ). Hence the Green’s function remains correct to
O(τ).

The single-electron Green’s function for the move from r′ to r is given by

g(r← r′) = p̃g1(r− r′′) + q̃g2(r−RZ). (51)

In order to calculate the Green’s function for the reverse move, need to perform all of the steps
above (apart from the random diffusion), starting at point r and ending up at r′.

10.7.4 Using the modifications in CASINO

These three modifications to the DMC Green’s function are applied if the NUCLEUS GF MODS
keyword is set to “T”. Note that they can only be used if bare nuclei are actually present!

10.8 Evaluating expectation values of observables

The reference energy ET is varied to maintain a reasonably steady population. However, this procedure
can result in a bias in the estimate of expectation values, especially for small populations. We evaluate
expectation values using the method of UNR [5] which attempts to eliminate bias due to population
control.

Using the label m for time step, Eq. 10 becomes

f(R,m) =
∫
GDMC(R← R′, τ)f(R′,m− 1) dR′ . (52)

Clearly, in the absence of the accept/reject step, the effect of including the (time-step-dependent)
reference energy ET (m) in GDMC can be “undone” by multiplying the right-hand-side of Eq. 52 by
exp[−τET (m)]. In a similar fashion the effect of including the reference energy from the previous
time step can be eliminated by multiplying by exp[−τET (m − 1)]. When the accept/reject step is

13In order to sample w from g2(w), we sample the polar angle uniformly on [0, π], the azimuthal angle uniformly on
[0, 2π] and the magnitude w from 4ζ3w2 exp(−2ζw). This is achieved by sampling r1, r2 and r3 uniformly on [0, 1] and
setting w = − log(r1r2r3)/2ζ; see reference [6] for further information.
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present, we can approximately undo the effect of the reference energy by using our best estimate of
the effective time step τEFF (See Section 10.6) in the “undoing” factors.

Continuing this process, we may eliminate the effect of changing the reference energy from f(m)
by multiplying it by

Π(m) =
∏

m′=0

exp [−τEFFET (m−m′)] , (53)

where in principle the product runs over all previous time steps. In practice it is sufficient to include
Tp (=TPDMC) terms in the product, provided that Tp is greater than the number of iterations over
which the DMC data are correlated by fluctuations in the reference energy: Tp = NINT(10/τ) is
generally sufficient. Let Π(m,Tp) =

∏Tp

m′=0 exp[−τEFF(m)ET (m−m′)]. Then the mixed estimator of
the expectation value of a (local) operator Â may be written as:

〈Ψ|Â|Φ〉
〈Ψ|Φ〉

=
∫

Ψ(R)Â(R)Φ(R) dR∫
Ψ(R)Φ(R) dR

≈
∑m

m′=1 Π(m′, Tp)
∑Nconfig(m′)

α=1 wα(m′)Â(α,m′)∑m
m′=1 Π(m′, Tp)

∑Nconfig(m′)
α=1 wα(m′)

, (54)

where wα(m′) is the weight of configuration α at the end of time step m′. (For unweighted DMC, wα

is simply the branching factor.) Note that if we choose Â(α,m) = Ψ−1(Rα,m)ĤΨ(Rα,m) then Eq. 54
gives us our mixed estimator of the ground state energy at time step m. This is used as our “best
estimate” of the ground state energy, Ebest (see Section 10.5).

Note that the terms in the Π weights are exponential functions of the reference energy; hence the
Π weights are potentially very large (or small). However, it can be seen that any constant contribution
to the reference energy will cancel in Eq. 54. Therefore, in practice, we evaluate the Π-weights as:

Π(m,Tp) =
Tp−1∏
m′=0

exp [τEFF(1)EV − τEFF(m)ET (m−m′)] , (55)

where EV is the variational energy. This is necessary in order to avoid floating point errors.

10.9 Growth estimator of the energy

The total weight of a DMC simulation at time t = mτ is given by:

W (t) ≡
∫
f(R, t) dR ≈

Nconfig(m)∑
α=1

wα(m) ≡Mtot(m). (56)

Assuming the DMC simulation to be equilibrated, so the ground state is the only remaining
component of the wave function, the time-dependence of the total weight is simply given by [22]:

W (t+ τ) = exp[− (E0 − ET ) τ ]W (t), (57)

where E0 is the (fixed-node) ground-state energy.
Hence the growth estimator of the ground state energy for a single iteration is given by:

E0 ≈ −
1
τ

log
(

exp[−ET (m+ 1)τ ]Mtot(m+ 1)
Mtot(m)

)
. (58)

By evaluating the expectation value of the argument of the logarithm using the method of UNR
[5] and using our estimate of the effective timestep, we obtain a much better estimate of the ground
state:

Egrowth(m) = − 1
τEFF(m)

log

∑m
m′=1 Π(m′, Tp)Mtot(m′)

(
exp[−ET (m′+1)τEFF(m′)]Mtot(m

′+1)
Mtot(m′)

)
∑m

m′=1 Π(m′, Tp)Mtot(m′)


= − 1

τEFF(m)
log
(∑m

m′=1 Π(m′ + 1, Tp + 1)Mtot(m′ + 1)∑m
m′=1 Π(m′, Tp)Mtot(m′)

)
. (59)

73



Equation 59 is used to evaluate the growth estimator of the energy in CASINO if the
GROWTH ESTIMATOR flag is set to .TRUE. in the input file.

Note that when evaluating the growth estimator using Equation 59, one of the constant multi-
plicative terms in the Π-weights of Equation 55 (exp[τEFF(1)EV ]) does not cancel out. Hence we need
to include one such term in the numerator of the argument of the logarithm.

10.10 Automatic block-resetting

Numerous schemes for preventing population control catastrophes due to the occurrence of ”persistent
electrons” have been investigated. Of these, the one that seems to perform best in practice involves
returning to an earlier point in the simulation and changing the random number sequence.

If the TRIP POPN input variable is set to a non-zero value, then a config.backup file will be
created. This contains the data in the config.out file from the previous block. If the population on
a single node exceeds TRIP POPN, then the data from config.backup will be read in, the last block
of lines will be erased from the dmc.hist and dmc.hist2 files, and the random number generator
will be called a few times so that the configurations go off on new random walks, hopefully avoiding
the catastrophe that led to TRIP POPN being exceeded. (If TRIP POPN is exceeded in the first or
second blocks, then config.in will be read in instead of config.backup.)

If a block has to be reset more than MAX REC ATTEMPTS times then the program will abort
with an error.

Great care should be taken when choosing a value for TRIP POPN. It should be sufficiently large
that it cannot interfere with normal population fluctuations: this would lead to population control
biasing. (Note that the population often grows rapidly at the start of equilibration: again, it must
be ensured that automatic block resetting does not interfere with this natural process.) On the other
hand, TRIP POPN should be sufficiently small that persistence is dealt with quickly and that there
is insufficient time for a population of configurations containing a persistent electron to stabilise.
Choosing larger block lengths allows the program to return to an earlier point in the simulation,
increasing the likelihood that the catastrophe will be avoided.

10.11 Evaluation of orbitals in the determinant part of the wave function

10.11.1 Gaussian basis set

CASINO can handle Gaussian basis sets up to and including angular momentum l = 4 (s, p, sp, d,
f and g functions). Suppose we have N Gaussians gw=1,...,N located at positions rw in the primitive
cell. Let R label the other primitive cells. There are therefore copies of the basic set of Gaussian
functions located at positions rw + R. We want to evaluate the Bloch orbitals at some point r. The
orbital is labelled by band ν and k-point,

φν,k(r) =
∑
w

Cν,k

∑
R

gw(r− rw + R) exp[ik ·R] . (60)

CASINO implicitly assumes the following about the k-points when in Gaussian mode:

• The k-points form a grid,

klmn =
l

q1
b1 +

m

q2
b2 +

n

q3
b3 + ks , (61)

where the qi are integers, the bi are the primitive reciprocal lattice vectors, and (0 ≤ l ≤ q1−1),
(0 ≤ m ≤ q2 − 1), (0 ≤ n ≤ q3 − 1). In CRYSTAL the offset ks is always zero, but CASINO
does not assume this.

• CASINO deals only with real orbitals, which can be formed by making linear combinations of
the states at k and −k. The list of k-points in the file gwfn.data must contain only one of
each (k,−k) pair, the presence of the other is assumed. To make a many-body Bloch wave
function satisfying the condition that it is multiplied by a phase factor under the replacement
ri → ri + Rs, where Rs is a translation vector of the simulation cell, the offset must satisfy
ks = 1/2Gs, where Gs is a reciprocal lattice vector of the simulation cell [12], see Section 10.12.

• Finite systems are treated as if they had a single k-point.
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10.11.2 Plane wave basis set

Soon.

10.11.3 Blip function basis set

Soon.

10.11.4 Atomic wave functions on a grid

Soon.

10.11.5 Wannier orbital evaluation

Soon.

10.12 Constructing real orbitals

The Bloch orbitals at an arbitrary point in k-space are complex. If the set of wavevectors consists of
±k pairs then one can always construct a set of real orbitals spanning the same space as the original
complex set. A necessary and sufficient condition for the mesh of Eq. 61 to consist of ±k pairs is that
ks = Gs/2, where Gs is a reciprocal lattice vector the simulation cell lattice. It is four times more
efficient to use real orbitals than complex ones because it takes four multiplications to evaluate the
product of two complex numbers but only one multiplication for the product of two real numbers. An
orbital satisfying Bloch’s theorem can be written as

φk(r) = uk(r)eik·r , (62)

where uk has the periodicity of the primitive lattice. The function φ∗k is a Bloch function with
wavevector −k. Therefore we can make two real orbitals from φk and φ∗k as follows:

φ+(r) =
1√
2

[φk(r) + φ∗k(r)] ,

φ−(r) =
1√
2i

[φk(r)− φ∗k(r)] . (63)

The orbitals φ+ and φ− are orthogonal if φk and φ∗k = φ−k are orthogonal, which is true unless
k− (−k) = Gp, i.e., their wavevectors differ by a reciprocal lattice vector of the primitive lattice. In
this case φ+ and φ−k are linearly dependent and we must use only one of them. Therefore the scheme
is:

Case 1. If k 6= Gp

2
use φ+ and φ− .

Case 2. If k =
Gp

2
use φ+ or φ− . (64)

In the second case, if one of φ+ or φ− is zero then obviously one must use the other one.
It may happen that we have in our k-point grid the vectors k and −k which are not related by

a reciprocal lattice vector of the primitive lattice. We may wish to occupy only one of the orbitals
from these k-points. We can then form a real orbital as cos(θ)φ+ +sin(θ)φ−, where θ is a phase angle
between zero and 2π. If both k and −k orbitals are supplied, CASINO chooses one which in general
is sufficient to generate all linearly independent orbitals.

10.13 Cusp corrections for Gaussian orbitals

One of the problems with Gaussian basis sets is that they are unable to describe the cusps in the
single-particle orbitals at the nuclei that would be present in the exact HF orbitals, because the
Gaussian basis functions have zero gradient at the nuclei on which they are centered. This can lead
to considerable difficulties in QMC simulations. In both VMC and DMC methods the energy is
calculated as the average over many points in the electron configuration space of the local energy,
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EL = Ψ−1ĤΨ, where Ĥ is the Hamiltonian and Ψ is the many-electron trial wave function. When
an electron approaches a nucleus of charge Z the potential energy contribution to EL diverges as
−Z/r, where r is the distance from the nucleus. The kinetic energy operator acting on the cusps in
the wave function must therefore supply an equal and opposite divergence in the local kinetic energy,
because the local energy is constant everywhere in the configuration space if Ψ is an eigenstate of the
Hamiltonian. Unfortunately, when using orbitals expanded in a Gaussian basis set, the kinetic energy
is finite at the nucleus and therefore EL diverges. In practice one finds that the local energy has wild
oscillations close to the nucleus, which give rise to a large variance in the energy. This is undesirable
in VMC, but within DMC it can lead to severe bias and even to catastrophic numerical instabilities.

It might seem that using local basis functions which can be made individually to obey the cusp
conditions at the nucleus on which they are centered, such as a Slater-type basis of cusped exponential
functions, would solve the problem. This is only partially true however. One issue is the fact that
the codes available for performing calculations with Slater-type functions are more limited and less
widely used than those which employ Gaussian basis sets. The more important point is that the use
of a Slater basis in which each basis function obeys the cusp conditions at the nucleus on which it is
centered does not automatically lead to a full solution of the electron–nucleus cusp problem. This is
due to the contributions from the tails of basis functions centered on other nuclei, which in general
prevent molecular orbitals expanded in that basis from obeying the electron–nucleus cusp condition.
Manten and Lüchow [16] have developed a scheme for applying cusp corrections in QMC calculations
but, as it similarly relies on correcting individual atom-centered basis functions, it is clearly not a full
solution.

An alternative solution to the cusp problem might be to enforce the electron–nucleus cusp condition
using the Jastrow factor. This is feasible and we have implemented it, but we found this to be
unsatisfactory because a very large number of variable parameters are required in order to obtain a
good trial wave function.

The solution we have finally adopted in CASINO involves the direct modification of the molecular
orbitals so that each of them obeys the cusp condition at each nucleus. This ensures that the local
energy remains finite whenever an electron is in the vicinity of a nucleus, although it generally has a
discontinuity at the nucleus.

10.13.1 Electron–nucleus cusp corrections

The Kato cusp condition [42] applied to an electron at ri and a nucleus of charge Z at the origin is(
∂〈Ψ〉
∂ri

)
ri=0

= −Z〈Ψ〉ri=0 , (65)

where 〈Ψ〉 is the spherical average of the many-body wave function about ri = 0. For a determinant of
orbitals to obey the Kato cusp condition at the nuclei it is sufficient for every orbital to obey Eq. (65)
at every nucleus. We need only correct the orbitals which are non-zero at a particular nucleus because
the others already obey Eq. (65). This is sufficient to guarantee that the local energy is finite at the
nucleus provided at least one orbital is non-zero there. In the unlikely case that all of the orbitals
are zero at the nucleus then the probability of an electron being at the nucleus is zero and it is not
important whether Ψ obeys the cusp condition.

An orbital, ψ, expanded in a Gaussian basis set can be written as

ψ = φ+ η , (66)

where φ is the part of the orbital arising from the s-type Gaussian functions centered on the nucleus
in question (which, for convenience is at r = 0), and η is the rest of the orbital. The spherical average
of ψ about r = 0 is given by

〈ψ〉 = φ+ 〈η〉 . (67)

In our scheme we seek a corrected orbital, ψ̃, which differs from ψ only in the part arising from the
s-type Gaussian functions centered on the nucleus, i.e.,

ψ̃ = φ̃+ η . (68)
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The correction, ψ̃ − ψ, is therefore spherically symmetric about the nucleus. We now demand that ψ̃
obeys the cusp condition at r = 0, (

d〈ψ̃〉
dr

)
0

= −Z〈ψ̃〉0 . (69)

Note that 〈η〉 is cusp-less because it arises from the Gaussian basis functions centered on the origin with
non-zero angular momentum, whose spherical averages are zero, and the tails of the Gaussian basis
functions centered on other sites, which must be cusp-less at the nucleus in question. We therefore
obtain (

dφ̃

dr

)
0

= −Z
(
φ̃(0) + η(0)

)
. (70)

We use Eq. (70) as the basis of our scheme for constructing cusp-corrected orbitals. We have found
that it is important to include η(0) when correcting molecular orbitals expanded in Gaussian basis
functions. We suspect this will also be so for Slater-type functions, and our cusp correction scheme
could also be applied in that case to impose the cusp conditions exactly.

10.13.2 Cusp correction algorithm

One could conceive of correcting the orbitals either by adding a function to the Gaussian orbital inside
some reasonably small radius, multiplying by a function (e.g., using the Jastrow factor as mentioned
earlier, or by replacing the orbital near the nucleus by a function which obeys the cusp condition.
However, as the local energy obtained from Gaussian orbitals shows wild oscillations close to the
nucleus, the best option seems to be the latter one: replacement of the orbital inside some small
radius by a well-behaved form.

We apply a cusp correction to each orbital at each nucleus at which it is non-zero. Inside some
cusp correction radius rc we replace φ, the part of the orbital arising from s-type Gaussian functions
centered on the nucleus in question, by

φ̃ = C + sgn[φ̃(0)] exp[p(r)] = C +R(r). (71)

In this expression sgn[φ̃(0)] is ±1, reflecting the sign of φ̃ at the nucleus, and C is a shift chosen so
that φ̃− C is of one sign within rc. This shift is necessary since the uncorrected s-part of the orbital
φ may have a node where it changes sign inside the cusp correction radius, and we wish to replace φ
by an exponential function, which is necessarily of one sign everywhere. The polynomial p is given by

p = α0 + α1r + α2r
2 + α3r

3 + α4r
4 , (72)

and we determine α0, α1, α2, α3, and α4 by imposing five constraints on φ̃. We demand that the value
and the first and second derivatives of φ̃ match those of the s-part of the Gaussian orbital at r = rc.
We also require that the cusp condition is satisfied at r = 0. We use the final degree of freedom
to optimize the behavior of the local energy in a manner to be described below. However, if we
impose such a constraint directly the equations satisfied by the αi cannot be solved analytically. This
is inconvenient and we found that a superior algorithm was obtained by imposing a fifth constraint
which allows the equations to be solved analytically, and then searching over the value of the fifth
constraint for a “good solution”. To this end we chose to constrain the value of φ̃(0). With these
constraints we have:

1.
ln |φ̃(rc)− C| = p(rc) = X1; (73)

2.
1

R(rc)
dφ̃

dr

∣∣∣∣∣
rc

= p′(rc) = X2; (74)

3.
1

R(rc)
d2φ̃

dr2

∣∣∣∣∣
rc

= p′′(rc) + p′2(rc) = X3; (75)
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4.
1

R(0)
dφ̃

dr

∣∣∣∣∣
0

= p′(0) = −Z
(
C +R(0) + η(0)

R(0)

)
= X4; (76)

5.
ln |φ̃(0)− C| = p(0) = X5. (77)

Although the constraint equations are non-linear, they can be solved analytically, giving

α0 = X5

α1 = X4

α2 = 6
X1

r2c
− 3

X2

rc
+
X3

2
− 3

X4

rc
− 6

X5

r2c
− X2

2

2

α3 = −8
X1

r3c
+ 5

X2

r2c
− X3

rc
+ 3

X4

r2c
+ 8

X5

r3c
+
X2

2

rc

α4 = 3
X1

r4c
− 2

X2

r3c
+
X3

2r2c
− X4

r3c
− 3

X5

r4c
− X2

2

2r2c
. (78)

Our procedure is to solve Eq. (78) using an initial value of φ̃(0) = φ(0). We then vary φ̃(0) so that
the “effective one-electron local energy”,

Es
L(r) = φ̃−1

[
−1

2
∇2 − Zeff

r

]
φ̃ (79)

= −1
2

R(r)
C +R(r)

[
2p′(r)
r

+ p′′(r) + p′2(r)
]
− Zeff

r
,

is well-behaved. Here the effective nuclear charge Zeff is given by

Zeff = Z

(
1 +

η(0)
C +R(0)

)
, (80)

which ensures that Es
L(0) is finite when the cusp condition of Eq. (76) is satisfied.

We studied the effective one-electron local energies obtained using Eq. (79) with Zeff = Z for the
1s and 2s all-electron Hartree-Fock orbitals of neutral atoms calculated by numerical integration on
fine radial grids for atoms up to Z = 82. We noticed that the quantity Es

L(r)/Z2 is only weakly
dependent on Z in the range r < 1.5/Z. We therefore chose an “ideal” effective one-electron local
energy curve given by

Eideal
L (r)
Z2

= β0 + β1r
2 + β2r

3 + β3r
4

+β4r
5 + β5r

6 + β66r7 + β7r
8. (81)

The values chosen for the coefficients were β1 = 3.25819, β2 = −15.0126, β3 = 33.7308, β4 = −42.8705,
β5 = 31.2276, β6 = −12.1316, β7 = 1.94692, obtained by fitting to the data for the 1s orbital of the
carbon atom. The value of β0 depends on the particular atom and its environment. The ideal effective
one-electron local energy for a particular orbital is chosen to have the functional form of Eideal

L (r),
but with the constant value β0 chosen so that the effective one-electron local energy is continuous at
rc. Hydrogen is treated as a special case as the 1s orbital of the isolated atom is only half-filled, and
we use Eideal

L (r) = β0 − 0.5.
We wish to choose φ̃(0) so that Es

L(r) is as close as possible to Eideal
L (r) for 0 < r < rc, i.e., the

effective one-electron local energy is required to follow the “ideal” curve as closely as possible. In our
current implementation we find the best φ̃(0) by minimizing the maximum square deviation from the
ideal energy, [Es

L(r)−Eideal
L (r)]2, within this range. Beginning with φ̃(0) = φ(0), we first bracket the

minimum then refine φ̃(0) using a simple golden section search. In principle we are more interested
in Es

L(r) being close to Eideal
L (r) near rc than near zero because the probability of an electron being

near rc is normally much greater than it being near the nucleus. One might therefore consider using a
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weighting factor and minimizing, e.g., [r(Es
L(r)−Eideal

L (r))]2. In practical calculations this was found
not to improve the result in general and weighting factors were not used in our final implementation.

It is clearly important to find an automatic procedure for choosing appropriate values of the cusp
correction radii. Although the final quality of the wave function in QMC calculations is expected to
have only a relatively weak dependence on its precise value, the optimal cusp correction radius rc for
each orbital and nucleus should depend on the quality of the basis set and on the shape of the orbital
in question. In particular one would expect the cusp correction radii to become smaller as the quality
of the basis set is improved. Although clearly many other schemes are possible, we choose the rc in our
implementation as follows. The maximum possible cusp correction radius is taken to be rc,max = 1/Z.
The actual value of rc is then determined by a universal parameter cc (‘CUSP CONTROL’ in the
CASINO input file) for which a default value of 50 was found to be reasonable. The cusp correction
radius rc for each orbital and nucleus is set equal to the largest radius less than rc,max at which
the deviation of the effective one-electron local energy calculated with φ from the ideal curve has a
magnitude greater than Z2/cc. Appropriate polynomial coefficients αi and the resulting maximum
deviation of the effective one-electron local energy from the ideal curve are then calculated for this rc.
As a final refinement one might then allow the code to vary rc over a relatively small range centered
on the initial value, recomputing the optimal polynomial cusp correction at each radius, in order to
optimize further the behavior of the effective one-electron local energy. This is done by default in the
implementation.

When a Gaussian orbital can be readily identified as, for example, a 1s orbital, it generally does
not have a node within rc,max. In many cases, however, some of the molecular orbitals have small s-
components which may have nodes close to the nucleus. The possible presence of nodes inside the cusp
correction radius complicates the procedure because the effective one-electron local energy diverges
there. One could simply force the cusp correction radius to be less than the radius of the node closest
to the nucleus, but in practice nodes can be very close to the nucleus and such a constraint severely
restricts the flexibility of the algorithm. In practice we define small regions around each node where
the effective one-electron local energies are not taken into account during the minimization, and from
which the cusp correction radius is excluded.

Gaussian cusp correction is activated through the input keyword CUSP CORRECTION - this has
an effect only if the system contains at least one all-electron atom. In periodic systems it has proved
difficult to implement this scheme efficiently, and while it works perfectly well the performance of the
code is significantly affected. Check the timings. More information about the cusp correction of each
orbital at each nucleus can be produced with the keyword CUSP INFO which can be useful in fine
tuning. Clearly this can produce a lot of output so beware.

10.14 The Jastrow factor

The Slater-Jastrow wave function is

Ψ(R) = exp [J ]
∑

n

cnD
↑
nD

↓
n , (82)

where the Dn are determinants of up and down spin orbitals and J is the Jastrow factor.

10.14.1 General form of CASINO’s new Jastrow factor

CASINO’s new Jastrow factor is the sum of homogeneous, isotropic electron–electron terms u, isotropic
electron–nucleus terms χ centred on the nuclei, isotropic electron–electron–nucleus terms f , also cen-
tred on the nuclei and, in periodic systems, plane-wave expansions of electron–electron separation and
electron position, p and q. The form is

J({ri}, {rI}) =
N−1∑
i=1

N∑
j=i+1

u(rij) +
Nions∑
I=1

N∑
i=1

χI(riI) +
Nions∑
I=1

N−1∑
i=1

N∑
j=i+1

fI(riI , rjI , rij)

+
N−1∑
i=1

N∑
j=i+1

p(rij) +
N∑

i=1

q(ri), (83)

where N is the number of electrons, Nions is the number of ions, rij = ri − rj , riI = ri − rI , ri is the
position of electron i and rI is the position of nucleus I. In periodic systems the electron–electron
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and electron–ion separations, rij and riI , are evaluated under the minimum-image convention. Note
that u, χ, f , p and q may also depend on the spins of electrons i and j.

The plane-wave term, p, will describe similar sorts of correlation to the u term. In periodic
systems the u term must be cut off at a distance less than or equal to the Wigner–Seitz radius of
the simulation cell and therefore the u function includes electron pairs over less than three quarters
of the simulation cell. The p term adds variational freedom in the “corners” of the simulation cell,
which could be important in small cells. The p term can also describe anisotropic correlations, such as
might be encountered in a layered compound. It is expected that the u term will be considerably more
important than the p term, which cannot describe the electron–electron cusps and is therefore best
limited to describing longer-ranged correlations. The q term will describe similar electron–nucleus
correlations to the χI terms.

10.14.2 The u, χ and f terms in the new Jastrow factor

The u term consists of a complete power expansion in rij up to order rC+Nu
ij which satisfies the Kato

cusp conditions at rij = 0, goes to zero at the cutoff length, rij = Lu, and has C − 1 continuous
derivatives at Lu:

u(rij) = (rij − Lu)C ×Θ(Lu − rij)×

(
α0 +

[
Γij

(−Lu)C
+
α0C

Lu

]
rij +

Nu∑
l=2

αlr
l
ij

)
, (84)

where Θ is the Heaviside function and Γij = 1/2 if electrons i and j have opposite spins and Γij = 1/4
if they have the same spin. In this expression C determines the behaviour at the cutoff length.
If C = 2, the gradient of u is continuous but the second derivative and hence the local energy is
discontinuous, and if C = 3 then both the gradient of u and the local energy are continuous.

The form of χ is

χI(riI) = (riI − LχI)C ×Θ(LχI − riI)×

β0I +
[
−ZI

(−LχI)C
+
β0IC

LχI

]
riI +

Nχ∑
m=2

βmIr
m
iI

 . (85)

It may be assumed that βmI = βmJ where I and J are equivalent ions. The term involving the ionic
charge ZI enforces the electron–nucleus cusp condition.

The expression for f is the most general expansion of a function of rij , riI and rjI that does not
interfere with the Kato cusp conditions and goes smoothly to zero when either riI or rjI reach cutoff
lengths:

fI(riI , rjI , rij) = (riI −LfI)C(rjI −LfI)CΘ(LfI − riI)Θ(LfI − rjI)
NeN

fI∑
l=0

NeN
fI∑

m=0

Nee
fI∑

n=0

γlmnIr
l
iIr

m
jIr

n
ij . (86)

Various restrictions are placed on γlmnI . To ensure the Jastrow factor is symmetric under electron
exchanges it is demanded that γlmnI = γmlnI ∀ I,m, l, n. If ions I and J are equivalent then it is
demanded that γlmnI = γlmnJ . The condition that the f term has no electron–electron cusps is(

∂f

∂rij

)
rij=0

riI=rjI

= 0, (87)

which implies that
NeN

fI∑
l=0

NeN
fI∑

m=0

γlm1Ir
l+m
iI (riI − LfI)2C = 0 , (88)

for all riI . Hence, ∀ k ∈ {0, . . . , 2N eN
fI }, ∑

l,m : l+m=k

γlm1I = 0. (89)
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The condition that the f term has no electron–nucleus cusps is(
∂f

∂riI

)
riI=0

rij=rjI

= 0, (90)

which gives
NeN

fI∑
m=0

Nee
fI∑

n=0

(Cγ0mnI − LfIγ1mnI)(−LfI)C−1rm+n
jI (rjI − LfI)C = 0, (91)

for all rjI . It is therefore required that, ∀ k′ ∈ {0, . . . , N eN
fI +N ee

fI},∑
m,n : m+n=k′

(Cγ0mnI − LfIγ1mnI) = 0. (92)

10.14.3 The p and q terms in the new Jastrow factor

The p term takes the cuspless form

p(rij) =
∑
A

aA

∑
G+

A

cos(GA · rij) , (93)

where the {GA} are the reciprocal lattice vectors of the simulation cell belonging to the Ath star of
vectors that are equivalent under the full symmetry group of the Bravais lattice, and “+” means that,
if GA is included in the sum, −GA is excluded.

For systems with inversion symmetry the q term takes the cuspless form

q(ri) =
∑
B

bB
∑
G+

B

cos(GB · ri), (94)

where the {GB} are the reciprocal lattice vectors of the primitive unit cell belonging to the Bth star
of vectors that are equivalent under the space-group symmetry of the crystal, and the “+” means
that, if GB is included in the sum, −GB is excluded.

10.14.4 Old Jastrow factor

The old redundant Jastrow factor jasfun.data used by CASINO before Easter 2004 is described in
this section (as it is still supported) can be written as follows (We denote the distance of electron i
from ion I by riI and the distance between electrons i and j by rij).

J = −
∑
i>j,j

[u0(rij) + S1(rij)]−
∑

i

∑
I

S2(riI)

−
∑
i>j,j

∑
I

[S3(riI , rjI) + S4(riI , rij) + S4(rjI , rij) + S5(riI , rjI , rij)] . (95)

The one-electron term S2 is allowed to depend on the electron spin, while the other terms which
all involve two electrons are allowed to depend on the relative spins. At the moment the terms for
two up-spin electrons are the same as for two down-spin electrons. In three dimensions, the function
u0 is taken to be

u0(rij) =
A

rij

[
1− exp

(
−rij
F

)]
exp

(
−
r2ij
L2

0

)
, (96)

where F is chosen so that the cusp conditions are obeyed, i.e., F↑↑ =
√

2A and F↑↓ =
√
A. L0 is

chosen so that u0 is effectively zero at the shortest distance to the surface of the Wigner-Seitz cell,
LWS. We normally take L0 ≈ 0.3LWS, and A is either set to the inverse of the plasma energy or
obtained by an optimization procedure. In two-dimensional electron and electron-hole gases, u0 is set
to

u0(rij) =
A
√
rij

[
1− exp

(
− rij

2F
−
√
rij
F

)]
exp

(
−
r2ij
L2

0

)
, (97)

81



where cusp conditions make F↑↑ = A2/3 and F↑↓ = (A/3)2/3.
The functions S1 to S5 are

S1 = (rij − L′)2r2ij
l1∑

l=0

αlTl(r̄′ij) +B′(rij − L′)2
(
L′

2
+ rij

)
(98)

S2 = (ri − L)2r2i
l2∑

l=0

βlTl(r̄i) +B(ri − L)2
(
L

2
+ ri

)
(99)

S3 = (ri − L)2(rj − L)2r2i r
2
j

lm3∑
l=0

lm3∑
m=0

γlmTl(r̄i)Tm(r̄j) (100)

S4 = (ri − L)2(rij − 2L)2r2i r
2
ij

l4∑
l=0

m4∑
m=0

εlmTl(r̄i)Tm(r̄ij) (101)

S5 = (ri − L)2(rj − L)2r2i r
2
j r

2
ij

lm5∑
l=0

lm5∑
m=0

nm5∑
n=0

ωlmnTl(r̄i)Tm(r̄j)Tn(r̄ij) , (102)

where Tl denotes the lth Chebyshev polynomial and the expansion range is rescaled to the orthogo-
nality interval of the Chebyshev polynomials, [-1,1], so that

r̄′ij =
2rij − L′

L′
(103)

r̄i =
2ri − L
L

(104)

r̄ij =
rij − L
L

. (105)

We assume that terms are zero according to:

S1 = 0 when rij > L′ (106)
S2 = 0 when ri > L (107)
S3 = 0 when ri > L or rj > L (108)
S4 = 0 when ri > L or rij > 2L (109)
S5 = 0 when ri > L or rj > L . (110)

To maintain the even symmetry of the Jastrow factor under interchange of the positions of two
electrons, γlm and ωlmn are forced to be symmetric under interchange of l and m.

The parameters in S1 to S5 are obtained from variance minimization. The computational cost of
including terms other than u0, S1 and S2 can be large. S2 is chosen to be cusp-less as we assume
that the ionic potentials are finite at the ion centre. Because u0 is chosen to obey the cusp electron-
electron conditions, S1, S3, S4 and S5 are chosen to be cusp-less. L is the range of the short distance
correlation functions, which is normally chosen to be of order a bond length and L′ is the range of
the long distance correlation function, which is normally chosen to be the Wigner-Seitz radius for a
periodic system or approximately the size of the system for finite systems. Functions which depend
on the distances to ions can be chosen to be different for different “sets” of ions. The most important
terms are u0 and S1 which give a homogeneous “u” function, and S2, which amounts to a “χ” function.

10.15 Wave function updating

Consider a Slater-Jastrow wave function

Ψ(R) = eJ(R)D↑(r1, . . . , rN↑)D
↓(rN↑+1, . . . , rN ) , (111)

where J is the Jastrow factor and D↑ and D↓ are Slater determinants for the spin-up and spin-down
electrons respectively. We will need to calculate the ratio of the new wave function to the old when,
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for example, the ith spin-up electron is moved from rold
i to rnew

i . The wave function ratio can be
written as

Ψ(Rnew)
Ψ(Rold)

= q↑
eJ(Rnew)
eJ(Rold)

, (112)

where

q↑ =
D↑(r1, r2, . . . , rnew

i , . . . , rN )
D↑(r1, r2, . . . , rold

i , . . . , rN )
. (113)

The contribution from the Jastrow factor is easily evaluated. A direct calculation of the determi-
nants in q↑ at every move by LU decomposition is time-consuming, and instead we use an updating
method. We define the Slater matrix D↑ via

D↑jk = ψj(rk) , (114)

where ψj is the jth one-electron orbital of the spin-up Slater determinant and rk is the position of
the kth spin-up electron. The transpose of the inverse of D↑, which we call D↑, may be expressed in
terms of the cofactors and determinant of D↑,

D↑jk =
cof(D↑jk)
det(D↑)

. (115)

The move of electron i changes only the ith column of D↑ and so does not affect any of the cofactors
associated with this column. The new Slater determinant may be expanded in terms of these cofactors
and the result divided by the old Slater determinant to obtain

q↑ =
det(D↑,new)
det(D↑,old)

=
∑

j

ψj(rnew
i )D↑,oldji . (116)

If the D↑ matrix is known, one can compute q↑ in a time proportional to N .
Evaluating D↑ using LU decomposition takes of order N3 operations; but once the initial D↑

matrix has been calculated it can be updated at a cost proportional to N2 using the formulae

D↑,new

ji =
1
q↑
D↑,oldji , (117)

in the case where k = i, and

D↑,new

jk = D↑,oldjk − 1
q↑
D↑,oldji

∑
m

ψm(rnew
i )D↑,oldmk , (118)

when k 6= i.

10.16 Evaluating the local energy

The local energy is given by

EL(R) =
N∑

i=1

−1
2
Ψ−1(R)∇2

i Ψ(R) +
N∑

i=1

V (R) +
N∑

i=1

Ψ−1(R)V̂ ps
nl,iΨ(R) + VCPP(R) +

N∑
i>j

ve−e(R) ,

(119)
where the terms are the kinetic energy, the local part of the external potential energy, the non-local
part of the potential energy, the core polarization potential energy (if present), and the electron-
electron interaction energy. The evaluation of the kinetic energy is discussed in Section 10.17. The
evaluation of the non-local energy is discussed in Section 10.18, while the core polarization potential
energy is discussed in Section 10.19. The local part of the external potential energy is divided into a
short range part around each ion, which is evaluated directly, and a long range Coulomb part which
is evaluated using the Ewald potential in periodic systems, see Section 10.20, or simply as a sum of
1/r potentials in finite systems. The electron-electron interaction energy is evaluated either using the
Ewald interaction or the MPC interaction, see Section 10.20.4 in periodic systems, or simply as a sum
of 1/r potentials in finite systems.
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10.17 Evaluating the kinetic energy

The kinetic part of the local energy, K, can be expressed as a sum of contributions from each electron,

K =
N∑

i=1

Ki =
N∑

i=1

−1
2
Ψ(R)−1∇2

i Ψ(R) . (120)

Because of the exponential form of the Jastrow factor, it is convenient to re-express Ki in terms of
the logarithm of Ψ. We define

Ti = −1
4
∇2

i (ln |Ψ|) = −1
4
∇2

i Ψ
Ψ

+
1
4

(
∇iΨ
Ψ

)2

, (121)

and the drift vector Fi,

Fi =
1√
2
∇i (ln |Ψ|) =

1√
2
∇iΨ
Ψ

. (122)

Therefore
Ki = 2Ti − |Fi|2 . (123)

In VMC an integration by parts shows that

〈K〉 = 〈|F|2〉 = 〈T 〉 , (124)

where the angle brackets denote averages over the variational distribution, |Ψ(R)|2. Eq. (124) provides
a useful consistency check for VMC calculations but note that it does not hold exactly within DMC,
except in the limit of perfect importance sampling. In VMC the kinetic energy may be evaluated
using any of the three estimators in Eq. (124). CASINO automatically uses 〈K〉 for the evaluation of
the total energy, because this normally leads to the lowest variance. However, the lowest variance of
the kinetic energy itself is often obtained from 〈T 〉. In DMC the three estimators of Eq. (124) are not
exactly equivalent and 〈K〉 should always be used.

For the Slater-Jastrow wave function of Eq. (111) we have

∇i (ln |Ψ|) =
∇iD

σi

Dσi
+∇iJ , (125)

∇2
i (ln |Ψ|) =

∇2
iD

σi

Dσi
−
(
∇iD

σi

Dσi

)2

+∇2
iJ . (126)

The terms involving Slater determinants may be evaluated by expanding Dσi in terms of the cofactors
of the ith column of the Slater matrix Dσi . If electron i has spin up, for example, the required
expansion is

D↑ = det (D↑) =
∑

j

ψj(ri) cof(D↑ji) . (127)

Since all the cofactors appearing in this equation are independent of ri, we obtain

∇iD
↑

D↑ =
∑

j

(∇iψj(ri))D
↑
ji , (128)

∇2
iD

↑

D↑ =
∑

j

(
∇2

iψj(ri)
)
D↑ji . (129)

When moving electron i from rold
i to rnew

i , it is useful to be able to evaluate the kinetic energy at
the new position before updating the D matrix. Since the cofactors in Eq. (127) are independent of
ri, Eqs. (128) and (129) become

∇iD
↑,new

D↑,new
=

1
q↑

∑
j

(∇iψj(rnew
i ))D↑,oldji , (130)

∇2
iD

↑,new

D↑,new
=

1
q↑

∑
j

(
∇2

iψj(rnew
i )

)
D↑,oldji , (131)

where q↑ = D↑,new/D↑,old.
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10.18 Evaluating the non-local pseudopotential energy

The action of the non-local pseudopotential on the wave function can be written as a sum of contribu-
tions from each electron and each angular momentum channel. The contribution to the local energy
made by the non-local pseudopotential is

Vnl = Ψ−1V̂nlΨ

=
∑

i

Ψ−1V̂ ps
nl,iΨ =

∑
i

Vnl,i , (132)

where for simplicity we consider the case of a single atom placed at the origin. Vnl,i may be written
as [19]

Vnl,i =
∑

l

V ps
nl,l(ri)

2l + 1
4π

∫
Pl [cos(θ′i)]

× Ψ(r1, . . . , ri−1, r′i, ri+1, . . . , rN )
Ψ(r1, . . . , ri−1, ri, ri+1, . . . , rN )

dΩr′
i
, (133)

where Pl denotes a Legendre polynomial.
CASINO currently performs the non-local projections for l = 0, 1, 2 only. The integral over the

surface of the sphere in Eq. 133 is evaluated numerically. The r′ dependence of the many-body wave
function is expected to have predominantly the angular momentum character of the orbitals in the
Slater part of the wave function. A suitable integration scheme is therefore to use a quadrature
rule that integrates products of spherical harmonics exactly up to some maximum value lmax. The
quadrature grids currently available are listed in Table 1. To avoid bias the orientation of the axes is
chosen randomly each time such an integral is evaluated.

Table 1: Quadrature grids for the non-local integration. NLRULE is the label for the rule (see
Section 7.1), lmax is the maximum value of l which is integrated exactly and Np is the number of
points in the grid.

NLRULE lmax Np

1 0 1
2 2 4
3 3 6
4 5 12
5 5 18
6 7 26
7 11 50

Within a VMC calculation it is often possible to use a low-order quadrature rule because the
error cancels over the run, but higher accuracy is required for wave function optimization and DMC
calculations, which are biased by errors in the non-local integration. In principle the non-local energy
should be summed over all the ionic cores and all electrons in the system. However, since the non-local
potential of each ion is short ranged, one need only sum over the few atoms nearest to each electron.

Exact sampling of the non-local energy with DMC is problematic and we use the localization
approximation in which the non-local operator acts on the trial wave function in exactly the same way
as in VMC. The error introduced by this approximation is proportional to (Ψ−Ψ0)2 [3], where Ψ0 is
the exact wave function.

10.19 The core polarization potential energy

Core polarization potentials (CPPs) account for the polarization of the pseudo-ion cores by the fields of
the other charged particles in the system. The polarization of the pseudo-ion cores by the fields of the
valence electrons is a many-body effect which includes some of the core-valence correlation energy.[32]
In the CPP approximation the polarization of a particular core is determined by the electric field at
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the nucleus. The electric field acting on a given ion core at RI due to the other ion cores at RJ and
the electrons at ri is

FI = −
∑
J 6=I

ZJ
RJI

|RJI |3
+
∑

i

riI

|riI |3
, (134)

where RJI = RJ −RI and riI = ri −RI . The CPP energy is then

VCPP = −1
2

∑
I

αIFI · FI , (135)

where αI is the dipole polarizability of core I.
Eq. 134 assumes a classical description which is valid when the valence electrons are far from the

core. When a valence electron penetrates the core the classical result is a very poor approximation,
diverging at the nucleus. To remove this unphysical behaviour each contribution to the electric field
in Eq. 134 is multiplied by a cutoff function f(riI/r̄I), which tends to unity at large riI . A further
possible modification is to allow the one-electron term in Eq. 135, which takes the form −αI/(2r4iI),
to depend on the angular momentum component, l, so that r̄I in the cutoff function is replaced by
r̄lI . With these modifications the CPP energy operator becomes

VCPP = −1
2

∑
I

αI

∑
i

1
r4iI

∑
l

f

(
riI
r̄lI

)2

P̂l +
∑

i

∑
j 6=i

riI · rjI

r3iIr
3
jI

f

(
riI
r̄I

)
f

(
rjI

r̄I

)

−2
∑

i

∑
J 6=I

riI ·RJI

r3iIR
3
JI

f

(
riI
r̄I

)
ZJ +

∑
J 6=I

RJI

R3
JI

ZJ

2
 , (136)

where P̂l is the projector onto the lth angular momentum component of the ith electron with respect
to the Ith ion.

We use the cutoff function [31, 32],

f (x) =
(
1− e−x2

)2

. (137)

For efficient evaluation, Eq. 136 is written as

VCPP = −1
2

∑
I

αI |F̄I |2 +
1
2

∑
I

αI

∑
i

1
r4iI

lmx∑
l=0

[
f

(
riI
r̄I

)2

− f
(
riI
r̄lI

)2
]
P̂l , (138)

where

F̄I = −
∑
J 6=I

ZJ
RJI

|RJI |3
+
∑

i

riI

|riI |3
f

(
riI
r̄I

)
, (139)

and the maximum angular momentum is lmx = 2. In our approach the cutoff parameter for all
angular momenta l > 2 is r̄I , which is slightly different from Shirley and Martin [32] who use r̄2I .

10.19.1 Implementation of CPPs in molecules and solids

Eq. 138 contains 5 parameters for each ion, αI , r̄0I , r̄1I , r̄2I and r̄I , whose values are entered at the
end of the xx pp.data file, see Section 7.3. Suitable values of the parameters are given in the paper
by Shirley and Martin.[32] If r̄0I = r̄1I = r̄2I = r̄I , the second term in Eq. 138 is zero and it is not
calculated. The second term in Eq. 138 is short-ranged because f(x) → 1 at large x. This term is
calculated in real space.

The second term in Eq. 138 is added to the pseudopotential and the core radii LCUTOFFTOL
and NLCUTOFFTOL are determined from the resulting potential. The electric field evaluation is
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activated by the presence of core polarization terms in the pseudopotential files; they are not calculated
by default since they may be expensive, especially when periodic boundary conditions are used.

In periodic boundary conditions the electric fields are evaluated directly from the analytic first
derivatives of the Ewald potential, see section 10.20. Calculations using CPPs may be 5-10 percent
slower than ones without CPPs in periodic systems.

NB: the first derivatives of the periodic potential in 1D polymers has not yet been implemented, and
thus the core-polarization energy cannot be evaluated in such systems.

10.20 Evaluation of infinite Coulomb sums

10.20.1 3D Ewald interaction

In three dimensionally periodic systems, the periodic potential of a neutralized lattice of point charges
may be evaluated using the Ewald method [1, 2]. Consider the periodic charge density consisting of
a unit point charge at rj in every simulation cell plus a uniform cancelling background,

ρj(r) =
∑
R

(
δ(r− rj −R)− 1

Ω

)
, (140)

where R denotes the lattice translation vectors and Ω is the volume of the simulation cell. The Ewald
formula for the periodic potential corresponding to this charge density is

vE(r, rj) =
∑
R

erfc
(
γ

1
2 |r− (rj + R)|

)
|r− (rj + R)|

− π

Ωγ

+
4π
Ω

∑
G 6=0

exp
(
−G2/4γ

)
G2

exp(iG · (r− rj)) , (141)

where G denotes the reciprocal lattice translation vectors. The value of vE(r, rj) is in principle
independent of the screening parameter γ and also in practice providing enough vectors are included
in the sums.14 The larger the value of γ the more rapidly convergent is the real space sum, but the
more slowly convergent is the reciprocal space sum. A compromise is required to minimize the overall
computational cost. In CASINO, this parameter is set to (2.8/Ω1/3)2 which approximately minimizes
the cost for a wide variety of Bravais lattices [37].

The full periodic potential of the simulation cell is obtained by adding the potentials of all the N
charges and their cancelling backgrounds (which sum to zero because the cell has no net charge),

v(r) =
N∑

j=1

qjvE(r, rj) . (142)

The potential acting on the charge at ri is therefore

v(ri) =
N∑

j( 6=i)

qjvE(ri, rj) + qiξ , (143)

where

ξ = lim
r→ri

(
vE(r, ri)−

1
|r− ri|

)
(144)

=
∑
R6=0

erfc(γ
1
2R)

R
− 2γ

1
2

π
1
2
− π

Ωγ

14Increasing the input parameter EWALD CONTROL will increase the number of reciprocal vectors included in the
sum, the effect of which is to increase the range of γ over which the energy is constant. The default value of γ should
normally lie in the middle of the constant energy region for the default number of reciprocal vectors, so playing with
EWALD CONTROL is normally unnecessary.
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+
4π
Ω

∑
G 6=0

exp(−G2/4γ)
G2

(145)

is the potential acting on the charge at ri due to its own images and cancelling background. The full
Ewald potential energy appearing in the QMC Hamiltonian is therefore

U(r1, . . . , rN ) =
1
2

N∑
i=1

N∑
j=1
(j 6=i)

qiqjvE(ri, rj) +
ξ

2

N∑
i=1

q2i (146)

=
1
2

N∑
i=1

N∑
j=1
(j 6=i)

qiqj (vE(ri, rj)− ξ) , (147)

where we have used the charge neutrality condition, qi = −
∑

j( 6=i) qj . The interaction vE(ri, rj) − ξ
approaches 1/|ri − rj | as ri → rj and is independent of the choice of the zero of potential.

The gradient of the 3D Ewald potential (Eq. 141) is required for evaluation of the core polarization
contribution to the total energy (Section 10.19). It is given by

∇vE(r, rj) = −
∑
R

r− (rj + R)
|r− (rj + R)|2

(
erfc

(
γ

1
2 |r− (rj + R)|

)
|r− (rj + R)|

+
2γ

1
2

π
1
2

exp(−γ|r− (rj + R)|2)

)

− 4π
Ω

∑
G 6=0

G
exp

(
−G2/4γ

)
G2

sin (G · (r− rj)) . (148)

10.20.2 2D Ewald interaction

Infinite Coulomb sums in systems which are periodic in two dimensions (the xy-plane, according to
CASINO) are performed using the standard 2D Ewald method originally developed by Parry [38].
One way to derive the relevant formula is to take the infinite separation limit of the 3D sum for
a periodic stack of finite-width slabs. CASINO uses this algorithm when treating two-dimensional
slabs of atoms with local Gaussian basis sets (useful in modelling surfaces) and also when treating 2D
electron and electron-hole phases (either as strict 2D planes, 2D slabs with finite thickness, or strict
2D bilayers). In the case of periodic arrays of slabs separated by a finite vacuum gap (necessary when
using plane-wave basis sets) then the regular 3D algorithm is used.

Consider a finite width slab with a charge density periodic in two dimensions consisting of a unit
point charge at rj in every simulation cell plus a uniform cancelling background.

ρj(r) =
∑
R

(
δ(r− rj −R)− 1

A

)
, (149)

where R now denotes the 2D lattice translation vectors in the xy-plane, and A is the area of the
simulation cell in that plane. The Parry formula for the periodic potential corresponding to this
charge density is

v2D
E (r, rj) =

∑
R

erfc
(
γ

1
2 |r− (rj + R)|

)
|r− (rj + R)|

+
π

A

∑
G 6=0

exp(iG · (r− rj))
G

[
exp(zG)erfc

(
G

2γ
1
2

+ zγ
1
2

)
+ exp(−zG)erfc

(
G

2γ
1
2
− zγ 1

2

)]

− π

A

[
erf(zγ

1
2 )z +

exp(−γz2)
(γπ)

1
2

]
, (150)
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where G denotes the reciprocal lattice translation vectors in the xy-plane, and z is the z-component
of the r− rj vector. In two dimensions CASINO sets the screening parameter γ to (2.4/A

1
2 )2 which

again should approximately minimize the cost over different Bravais lattices.
The full periodic potential of the simulation cell is obtained by following a procedure analogous to

that described for the 3D case, with the self term ξ given by

ξ = lim
r→ri

(
vE(r, ri)−

1
|r− ri|

)
(151)

=
∑
R6=0

erfc
(
γ

1
2R
)

R
− 2γ

1
2

π
1
2

+
π

2A

∑
G 6=0

erfc
(

G

2γ
1
2

)
G

− π
1
2

Aγ
1
2
. (152)

The first derivatives of the 2D Ewald potential, required for the evaluation of the core polarization
energy in 2D slabs, are different in directions parallel and perpendicular to the plane of the slab. The
x and y derivatives are given by

∂v2D
E (r, rj)
∂λ

= −
∑
R

(r− (rj + R))µ

|r− (rj + R)|2

[
erfc

(
γ

1
2 |r− (rj + R)|

)
|r− (rj + R)|

+
2γ

1
2

π
1
2

exp(−γ|r− (rj + R)|2)

]
(153)

− π

A

∑
G 6=0

Gµ sin(G · (r− rj))
G

[
exp(zG)erfc

(
G

2γ
1
2

+ zγ
1
2

)
+ exp(−zG)erfc

(
G

2γ
1
2
− zγ 1

2

)]
.

where λ = x or y, and the z derivative is given by

∂v2D
E (r, rj)
∂z

= −
∑
R

z

|r− (rj + R)|2

[
erfc

(
γ

1
2 |r− (rj + R)|

)
|r− (rj + R)|

+
2γ

1
2

π
1
2

exp(−γ|r− (rj + R)|2)

]

+
π
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∑
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[
exp(zG)erfc
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G

2γ
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2

+ zγ
1
2

)
+ exp(−zG)erfc

(
G

2γ
1
2
− zγ 1

2

)]
− 2π

A
erf(zγ

1
2 ) . (154)

Note finally that in things such as 2D bilayer systems (electrons in one layer, holes in the other,
say) there is an additional ’capacitor term’ due to interaction of the backgrounds, about which I shall
write more here in a minute. CASINO does not evaluate this term.

10.20.3 1D Coulomb interaction

Coulomb sums in systems which are periodic in one dimension (the x-direction, according to CASINO)
are performed using an algorithm based on the Euler-Maclaurin summation formula.

See for example Eq. 4.8 in Comp. Phys. Commun. 84, 156 (1994).
More details to appear here later.

10.20.4 Model Periodic Coulomb Interaction

The Model Periodic Coulomb (MPC) interaction [10, 11, 12] is used to reduce finite size effects in
periodic calculations. The exact MPC interaction operator is

Ĥexact
e−e =

∑
i>j

f(ri − rj) +
∑

i

∫
WS

ρ(r) [vE(ri − r)− f(ri − r)] dr , (155)

where f(r) is the 1/r Coulomb interaction treated within the “nearest image” convention, which
corresponds to reducing the vector r into the Wigner-Seitz (WS) cell of the simulation cell, vE is the
Ewald potential, and ρ is the electronic charge density from the many-electron wave function Ψ. The
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electron-electron contribution to the total energy is evaluated as the expectation value of Ĥexact
e−e with

Ψ minus a double counting term,

Eexact
e−e = 〈Ψ|Ĥexact

e−e |Ψ〉 −
1
2

∫
WS

ρ(r)ρ(r′) [vE(r− r′)− f(r− r′)] dr dr′ . (156)

Evaluating the expectation value gives

Eexact
e−e =

1
2

∫
WS

ρ(r)ρ(r′)vE(r− r′) dr dr′

+

∫
WS

|Ψ|2
∑
i>j

f(ri − rj) Πk drk −
1
2

∫
WS

ρ(r)ρ(r′)f(r− r′) dr dr′

 , (157)

where the first term on the right hand side is the Hartree energy and the term in brackets is the
exchange-correlation energy. We can see that the Hartree energy is calculated with the Ewald interac-
tion while the exchange-correlation energy (expressed as the difference between a full Coulomb term
and a Hartree term) is calculated with the cutoff interaction f .

In a DMC calculation we require the local energy at every step, but we only know the DMC charge
density, ρ, at the end of the run. Normally we have a good approximation to the charge density, ρA,
either from an independent particle calculation or a VMC calculation. We can avoid the need to know
ρ exactly by constructing a new interaction operator which involves only ρA,

Ĥe−e =
∑
i>j

f(ri − rj) +
∑

i

∫
WS

ρA(r) [vE(ri − r)− f(ri − r)] dr

− 1
2

∫
ρA(r)ρA(r′) [vE(r− r′)− f(r− r′)] dr dr′ . (158)

Because of the presence of the third term on the right hand side, which is a constant, there is no
double counting and the interaction energy becomes

Ee−e = 〈Ψ|Ĥe−e|Ψ〉

=
∫

WS

ρ(r)ρA(r′)vE(r− r′) dr dr′ − 1
2

∫
WS

ρA(r)ρA(r′)vE(r− r′) dr dr′

+

∫
WS

|Ψ|2
∑
i>j

f(ri − rj) Πk drk −
∫

WS

ρ(r)ρA(r′)f(r− r′) dr dr′

+
1
2

∫
WS

ρA(r)ρA(r′)f(r− r′) dr dr′
)
. (159)

Noting that

Ee−e = Eexact
e−e −

1
2

∫
WS

[ρ(r)− ρA(r)] [ρ(r′)− ρA(r′)] [vE(r− r′)− f(r− r′)] dr dr′ , (160)

we see that the error due to this approximation is second order in (ρ − ρA), and in addition the
operator (vE−f) becomes very small as the size of the simulation cell goes to infinity. The error term
is therefore usually small and is neglected although it could be calculated after the simulation. We
use the MPC expressions of Eqs. 158 and 159 in both VMC and DMC calculations.

The first term of the Hamiltonian of Eq. 158 is evaluated in real space and the second term in
Fourier space. The third term is a constant which is evaluated in reciprocal space at the start of the
calculation. Introducing the Fourier transformed quantities,

fG =
1
Ω

∫
WS

f(r)eiG·rdr , (161)

ρG =
1
Ω

∫
WS

ρ(r)eiG·rdr , (162)
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where Ω is the volume of the cell, and noting that the Fourier transform of the Ewald interaction is
4π

ΩG2 , we have

Ĥe−e =
∑
i>j

f(ri − rj) + Ω
∑

i

∑
G 6=0

[
4π

ΩG2
− fG

]
ρA,Ge

−iG·ri − Ω
∑

i

fG=0ρA,G=0 − C , (163)

where

C =
Ω2

2

∑
G 6=0

[
4π

ΩG2
− fG

]
ρ∗A,GρA,G −

Ω2

2
fG=0ρ

∗
A,G=0ρA,G=0 (164)

The calculation of fG is achieved using the following scheme developed by Randy Hood. The
integrand in Eq. 161 diverges at the origin and we separate out the divergent behaviour by writing

f(r) = g(r) + h(r) (165)

where

g(r) = y(r) r < L

=
1
r

r > L , (166)

and

h(r) =
(

1
r
− y(r)

)
r < L

= 0 r > L , (167)

where L is the radius of the largest sphere which is contained within the Wigner-Seitz cell and y(r) is
chosen to be

y(r) = − r2

2L3
+

3
2L

, (168)

so that both g and h have continuous first derivatives at r = L. The Fourier transform of h(r) is
calculated analytically as

hG =
1
Ω

∫ L

0

∫ +1

−1

(
1
r

+
r2

2L3
− 3

2L

)
2πr2eiGrcosθdcosθ dr

=
4π

ΩG2
+

12π
ΩL2G4

[
cosGL− sinGL

GL

]
, (169)

from which the G = 0 value can be extracted as

hG=0 =
2πL2

5Ω
, (170)

The Fourier transform of g is calculated numerically with an FFT, added to the analytic Fourier
transform of h, and stored by CASINO in the file eepot.data. Note that for historical reasons the
quantity stored in eepot.data is actually ΩfG.

10.21 Estimating equilibration times and correlation periods

The rms distance diffused by a particle in a period T of imaginary time is
√

2NDDAT , where A is the
move acceptance ratio (which is usually close to 1 in DMC and 1/2 in VMC), ND is the dimensionality
of the system (which is usually 3, unless a strict 2D system is being studied) and D = 1/2m is the
diffusion constant, where m is the particle mass (NB, D = 1/2 for electrons). We expect that
correlation effects will disappear when the particles have diffused through distances in excess of the
physically-relevant length-scale λ. (For example, in an electron gas, the density parameter rs is the
relevant length-scale.) Let T = Nmove× τ , where Nmove is the number of moves and τ is the timestep.
Then the number of moves over which we expect correlation effects to be present is
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Nmove =
λ2

2NDDτA
. (171)

The number of equilibration moves should be substantially larger than the above estimate of the
correlation period in order to ensure that all of the transient effects due to the initial distribution
die away. The required equilibration period is often considerably greater than one might expect by
simply examining the variation of the total energy with time.

In practical QMC calculations, with sensible choices of timestep, we often find the VMC correlation
period to be about 5 configuration moves and the DMC correlation period to be about 1000 moves.

10.22 Statistical analysis of data

The Monte Carlo data must be analysed to obtain the required mean values along with a measure of
their statistical errors. Two factors complicate the analysis: (1) the data is normally serially correlated,
and (2) there is an initial period of equilibration which should be excluded from the averaging.

We use the “blocking” method [9] in which adjacent data points are averaged to form block
averages:

x1
i =

1
2
(x2i−1 + x2i) . (172)

This procedure is carried out recursively so that after each blocking transformation the number of
data points is reduced by one half. For simplicity we assume that the number of data points, M , is
a power of two. The mean value of the block means is unchanged by the block transformations, but
the variance of the block means tends to increase with the number of block transformations,

σ2
b =

1
Mb − 1

Mb∑
j=1

(x2
bj − x̄

2) , (173)

where Mb is the number of blocks, x̄bj is the mean value of the jth block and x̄ is the overall mean
value. The error in σ2

b is estimated from √
2

M/Mb − 1
σ2

b . (174)

The value of σb increases with block length Mb until a limiting value is reached which corresponds
to the true standard deviation of the mean. For very large block sizes the error in σb becomes large
and if M is not large enough a limiting value of σb is not reached, but because it is simple to calculate
the error in σb, such behaviour is easy to identify. These operations are carried out by the utility
“reblock”, which reads data from a “dmc.hist” or “vmc.hist” file.

10.22.1 Estimate of the correlation time given by CASINO

The correlation time of the energy is computed and shown for every block in a VMC calculation,
and also when using the reblock utility. The correlation time measures the average number of Monte
Carlo steps between two uncorrelated values of the energy, and should be unity for optimal statistics.
Note that by ”Monte Carlo Step” what is meant is ”every step for which an energy is stored”, in this
context. For example, in a VMC calculation, every CORPER×NVMCAVE steps are merged into one
energy. Increasing any of the two variables would decrease the calculated correlation time, meaning
that the values that have been stored are more uncorrelated.

The definition of the correlation time τ of an observable H is:

τ =
∫ +∞

−∞
A(t)dt =

∫ +∞

−∞

〈(Ht′ − 〈Ht′′〉t′′)(Ht′+t − 〈Ht′′〉t′′)〉t′
σ2

H

dt (175)

where A(t) is the value of the autocorrelation function at an interval of t, σ2
H = 〈(Ht′ −〈Ht′′〉t′′)2〉t′ is

the variance of the expectation values, and the latter are taken with respect to their subscript, which
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we shall remove for the sake of clarity. For a discrete set of values, equally spaced by an amount
∆t = 1:

τ =
+∞∑

t=−∞
A(t) = 1 + 2

+∞∑
t=1

A(t) = 1 + 2
+∞∑
t=1

〈(Ht′ − 〈H〉)(Ht′+t − 〈H〉)〉
σ2

H

(176)

and for a finite set of length N:

τ = 1 + 2
N−1∑
t=1

〈(Ht′ − 〈H〉)(Ht′+t − 〈H〉)〉
σ2

H

(177)

Numerically, the problem with this expression is that if averages are used instead of proper ex-
pectation values (which are, of course, unknown), great fluctuations will appear at the tail of the
autocorrelation function. This problem is solved by introducing a cut-off in the summation:

τ(tmax) = 1 + 2
tmax∑
t=1

(Ht′ −H)(Ht′+t −H)
σ̂2

H

(178)

where the numerator is the average of the measured values of its arguments over the configurations
indexed by 1 ≤ t′ ≤ N − t, and σ̂2

H is the variance of these measures. One possibility for setting the
cut-off is to check against the self-consistent inequality tmax < 3τ(tmax) while computing the sum, and
truncate it as soon as it stops being true. This allows for an estimate of the error in above expression
to be calculated:

ετ (tmax) = τ

√
2(2tmax + 1)

N
(179)

10.22.2 Further considerations for DMC

Each iteration is equally weighted in a VMC calculation; however, for DMC, each iteration is weighted
by the total weight of the configurations multiplied by the Π-weight. In either case, let the iteration
weights be wi, the total number of data points be M and the energy from iteration i be ei.

Consider the bth reblocking transformation, in which the block length is Bb = 2b−1. The data
range may be divided into Mb blocks, the last of which is usually incomplete.

For each block j, the block weight is

Wbj =
∑
i∈j

wi, (180)

and the corresponding block energy is

Ebj =

∑
i∈j eiwi

Wbj
. (181)

The “reblocked” energy is

Eb =

∑
j EbjWbj∑

j Wbj

=
∑

i eiwi∑
i wi

≡ E, (182)

which is therefore independent of reblocking transformation. On the other hand, the reblocked variance
is

σ2
b =

∑
j Wbj(Ebj − E)2∑
j Wbj −

∑
j

W 2
bj∑

j
Wj

, (183)

which does depend on the reblocking transformation number.
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The number of blocks at the bth reblocking transformation is Nb = M/Bb. (Note that Nb is not
necessarily an integer, because the last block may be incomplete.) The standard error in the energy
estimate at reblocking transformation number b is

δb =
σb√
Nb

, (184)

and the error in δb may be estimated as

εb =
δb√

2(Nb − 1)
. (185)

The reblock utility produces a table of δb and εb against b; the user can then look for a region in
which the standard error δb has plateaued as a function of b, and choose an appropriate reblocking
transformation number, which is then used to calculate the error bars on all the different components
of energy.

10.23 Wave function optimization - standard method

Optimization of the trial wave function is a crucial part of a VMC or DMC calculation. CASINO
allows optimization of the parameters in the Jastrow factor, see Section 7.2, of the coefficients of the
determinants of a multi-determinant wave function, of the parameters in the backflow η-function, of
pairing parameters in electron-hole gases and Padé coefficients in orbitals in Wigner crystals.

Wave function optimization in CASINO is achieved by minimizing the variance of the energy,

σ2
E(α) =

∫
Ψ2(α) [EL(α)− EV (α)]2 dR∫

Ψ2(α) dR
, (186)

where α is a set of parameters, and EV is the variational energy. The most important ground
for preferring variance minimization to, say, energy minimization is that it shows better numerical
stability, particularly in large systems.

Minimization of σ2
E is carried out via a correlated-sampling approach in which a set of configura-

tions distributed according to Ψ2(α0) is generated, where α0 is an initial set of parameter values. The
variance σ2

E(α) is then evaluated as

σ2
E(α) =

∫
Ψ2(α0) w(α) [EL(α)− EV (α)]2 dR∫

Ψ2(α0) w(α) dR
, (187)

where

EV (α) =
∫

Ψ2(α0) w(α) EL(α) dR∫
Ψ2(α0) w(α) dR

, (188)

and the integrals contain a weighting factor, w(α), given by

w(α) =
Ψ2(α)
Ψ2(α0)

. (189)

The parameters α are adjusted until σ2
E(α) is minimized. The advantage of the correlated-sampling

approach is that one does not have to generate a new set of configurations every time the parameter
values are changed.

In order to generate a set of configurations distributed according to Ψ2(α0), a VMC ‘configura-
tion generation’ run must be carried out first. The subsequent variance minimization using these
configurations is handled by the subroutine VARMIN. The minimization itself is carried out by the
routine NL2SNO in module NL2SOL, which performs an unconstrained minimization (without re-
quiring derivatives) of a sum of m squares of functions which contain n variables, where m ≥ n.
(Information on the minimization routine can be found in Reference [39]). Having generated a new
set of parameters, we then carry out a configuration generation run with these parameters, and, if
necessary, a further variance minimization run, and so forth.

Before carrying out this process, the user must decide how they wish to parameterize the trial wave
function, and with how many parameters. They must also decide on the number of configurations to
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be used in the optimization. These choices are system specific, and depend on the level of accuracy
to which the user wishes to work.

A systematic approach to deciding on an appropriate number of variational parameters is to start
by optimizing a few parameters, then to add more and re-optimize, and so on, until the decrease in
energy resulting from the inclusion of additional parameters is comparable with the error bars in the
VMC energy. Once this stage has been reached, adding further parameters can be of no benefit; indeed
the extra variational freedom will then become problematic, leading to poorer trial wave functions,
as parameters are optimized for specific configuration sets. If further parameters are to be optimized,
the user must increase the number of configurations.

It is clearly desirable for the VMC-generated configurations to be completely uncorrelated. This
can be achieved by giving corper a large value. Reblocking VMC energies in a preliminary VMC
run will allow the user to determine the correlation period for VMC energies, which in turn sug-
gests a suitable value for corper. It is also essential that the VMC configuration generation run is
fully equilibrated. Since VMC equilibration is usually computationally inexpensive, this should be
straightforward enough. The utility plot vmc energy can be used to verify that the VMC energies
have equilibrated.

The user may choose whether to optimize the Jastrow function, determinant expansion coefficients,
or the pairing parameter or Padé coefficients in a Wigner crystal, by setting the vm opt jasfun,
vm opt detcoeff, and vm opt pairing flags as appropriate. For most applications, it is only nec-
essary to optimize the Jastrow function. Exactly which parameters in the Jastrow function are to be
optimized are indicated in the jastrow.data file. (See Section 10.14.)

When optimizing a Jastrow function, if non-linear parameters such as the cutoffs are not being
optimized, it is possible to accelerate the variance minimization process by setting vm mode to
‘linear’; CASINO will then exploit the fact that the Jastrow function has a linear dependence on all the
parameters appearing in it, enormously speeding up the process of recomputing configuration energies
when the parameters are changed. This is expensive in memory, however. If memory requirements
prevent the use of linear mode, or cutoffs are to be included in the optimization, then vm mode
should be set to ‘direct’, and the local energies of each of the configurations will be calculated from
scratch when the parameters are changed [NOTE : THIS STILL ONLY WORKS FOR THE OLD
JASTROW FACTOR - TO BE CHANGED SOON. MDT 6.2004].

When optimizing Padé coefficients, the condition that the coefficients are the same for electrons of
either spin can be enforced by setting the ‘optimize all parameters’ flag in heg.data to ‘.FALSE.’. The
second pair of Padé coefficients in the file are then ignored. If Padé coefficients are to be optimized,
‘direct’ mode must be used.

The process of variance minimization requires careful monitoring by the user. Unless proper action
is taken, the correlated sampling procedure may become numerically unstable, particularly for large
system sizes. The characteristic of these instabilities is that during the minimization procedure a few
configurations (often only one) acquire a very large weight, w(α). The estimate of the variance is
then reduced almost to zero by a set of parameters which are found to give extremely poor results
in a subsequent QMC calculation. One can overcome this instability by using more configurations.
Various alternative ways of dealing with this instability have been devised. One method is to limit
the upper value of the weights [15] or to set the weights equal to unity [17, 14]. In our calculations
for large systems we normally set the weights to unity, which is achieved by setting vm reweight
to ‘.FALSE.’. It can be verified that the effect of this approximation is in general negligible by
regenerating configurations and carrying out a new variance minimization process.

On the other hand, if the initial trial wave function is poor, then some of the configuration genera-
tion/variance minimization cycles can be bypassed by using the weights. There is also some evidence
that the optimization of “difficult” parameters such as cutoff lengths works better when vm reweight
is ‘.TRUE.’.

It is possible to choose how much information CASINO will provide during the minimization
process. Setting vm info to 1 will provide no information during the minimization; setting it to 2
will provide a list of the parameters, the mean energy and variance at each iteration; 3 will provide the
same information as 2, but the weights will also be computed and their mean and variance displayed
(note that the weights are not actually used unless vm reweight is set); 4 provides an enormous
amount of detail and is only likely to be of use for development or debugging purposes.

Some things to check when carrying out variance minimization:
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• Does the VMC energy of successive configuration generation runs decrease by a statistically
significant amount? Once it has ceased to fall, there is little point in continuing the minimization
process. Usually, for a successful run, we find that a single configuration generation / variance
minimization loop is sufficient, but this should always be checked. If the energy fails to ‘settle
down’ over successive loops then there may be too much variational freedom in the trial wave
function.

• Does the reported variance at each iteration in the variance minimization runs fall? If not then
there is a problem with the minimizer (NL2SOL) itself.

• Does the reported mean energy at each iteration fall? Since energy and variance minima do not
necessarily coincide, it is possible for it to rise slightly; however, if it rises substantially then it
suggests there may be a problem such as the use of too many parameters.

• Do the parameters themselves change values substantially in successive optimizations when the
energy is not being lowered? If ‘yes’ then they may well be redundant.

10.24 Wave function optimization - new method

10.24.1 Background

Consider the linear parameters in casino’s new Jastrow factor (the expansion coefficients {αl}, {βm},
{γlmn}, {aA} and {bB} in the u, χ, f , p and q terms respectively). The local energy of a single
configuration can be shown to be a quadratic function of the linear parameters; hence the variance of
the local energies of a fixed, finite set of configurations is a quartic function of the parameters. But
this is precisely the quantity that is minimized in an unreweighted variance-minimization calculation.
The process of variance minimization can therefore be greatly simplified and accelerated if only linear
Jastrow parameters are to be optimized.

In an ordinary variance-minimization calculation, the VMC method is used to generate a set of
configurations distributed according to the initial trial wave function. During the optimization process,
the variance of the local energies of this configuration set is computed for different sets of parameters,
and the variance is minimized with respect to the parameters. By contrast, in the new optimization
method, the quartic expansion coefficients of the unreweighted variance are accumulated directly in
VMC: there is no need to write out a set of configurations. Furthermore, when the unreweighted
variance—referred to as the least-squares function (LSF)—is evaluated during the subsequent opti-
mization stage, there is no need to repeatedly sum over a set of configurations: the quartic LSF can
be evaluated directly.

The fact that the LSF can be evaluated as a quartic function of the parameters gives two significant
advantages over the standard variance-minimization algorithm: (i) the LSF can be evaluated extremely
rapidly (typically thousands of times per second); furthermore the CPU time required is independent
of the system size; and (ii) the LSF along any line in parameter space is a simple quartic polynomial,
so that the exact, global minimum of the LSF along that line can be computed analytically.

The method has two drawbacks: (i) only linear Jastrow parameters can be optimized in this
fashion; and (ii) the number of quartic coefficients to be evaluated and stored in memory grows as the
fourth power of the number of parameters to be optimized.

10.24.2 Using the new optimization method

A casino variance-minimization calculation using the new optimization method is carried out in
exactly the same way as an ordinary variance-minimization calculation except that:

1. The use newopt keyword in input should be set to “T”.

2. There is no need to write out any configurations, so the user can set the nwrcon keyword to
zero.

3. If desired, the user may change the method used to minimize the LSF with respect to the
set of parameters by using the newopt method keyword. This can take the values: “CG”
(conjugate gradients); “SD” (steepest descents); “GN” (Gauss–Newton); “MC” (Monte Carlo
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line minimization); “LM” (simple line minimization); “CG MC” (alternate conjugate gradi-
ents and Monte Carlo line minimization); “BFGS” (Broyden–Fletcher–Goldfarb–Shanno); or
“BFGS MC” (alternate BFGS and Monte Carlo line minimization). If the newopt method
keyword is omitted then the BFGS method will be used by default. If you experience difficulty
optimizing a large set of parameters then the Gauss–Newton method is worth trying. The BFGS
method seems to be the most efficient method in general, however.

4. If desired, the user can change both the maximum number of iterations and the number of line
minimizations to be performed by means of the newopt iterations keyword. If this keyword
is omitted, or it is given a negative value, then a default number of iterations will be performed.

The cutoff lengths in the Jastrow factor are important variational parameters, and some attempt
to optimize them should always be made. It is recommended that a (relatively cheap) calculation
using the standard variance-minimization method should be carried out in order to optimize the
cutoff lengths, followed by an accurate optimization of the linear parameters using the new method.
For some systems, good values of the cutoff lengths can be supplied immediately (for example, in the
fluid phase of an electron gas, the cutoff length Lu should be set equal to the Wigner–Seitz radius of
the simulation cell), and one can make use of the new optimization method straight away.

The quartic LSF coefficients are stored in a file called varmin coeffs.data. This file is gen-
erated in a VMC simulation when the use newopt keyword is set to “T”. If a VMC simulation
is performed in a directory in which a varmin coeffs.data file is already present, the existing
data in the file will be added to; it is therefore possible to refine the quality of quartic-coefficient
data by extending a VMC calculation. Note that varmin coeffs.data is an unformatted file; how-
ever, a formatting/unformatting utility called format varmin coeffs exists. This utility reads
varmin coeffs.data and produces a formatted varmin coeffs.data formatted file, and vice versa.
varmin coeffs.data is deleted by the runvarmin script at the end of each optimization calculation,
so that one starts afresh at every VMC “coefficient-generation” stage.

The new optimization method can only be used in conjunction with casino’s new Jastrow factor.
The method is not yet implemented for electron–hole systems.

10.24.3 Further developments to the new optimization method

Extensive tests are currently being carried out to establish the importance of locating the global
minimum of the LSF and to determine the best optimization strategy. The following developments to
the new optimization method will be made in the near future:

1. The default behaviour of the new optimization method will be improved.

2. The ability to use the new optimization method for electron–hole systems will be added.

3. The new optimization method will be given the ability to read in a config.in file containing a
set of configurations and construct the quartic coefficients for that configuration set.

4. The new optimization method may be combined with the standard variance-minimization al-
gorithm in such a fashion that the new method is used to optimize linear Jastrow parameters
while the nonlinear parameters are optimized by the standard method. Each time the nonlin-
ear parameters are adjusted, the quartic coefficients will be constructed and the LSF will be
minimized with respect to the linear parameters using the new method.

10.25 Further considerations in electron-hole systems

CASINO has the ability to include positively charged particles of variable mass (holes) in the simu-
lation in addition to electrons. Currently these may only be used in electron-hole phases without an
external potential, but the code needs only a few trivial changes for these things to be able to wander
around inside real crystals (useful for studying positron problems - contact MDT if you want this to
be implemented).

In this section the changes required to the CASINO code and to the basic equations in the presence
of holes are discussed. These largely stem from the possibility of having a variable mass ratio between
the positively and negatively-charged particles. The basic differences are:
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• The diffusion Green’s function, Eq. 11, becomes,

GD(R← R′, τ) =
1

(4πDeτ)3Ne/2
exp

(
− (Re −R′

e − 2τDeVe(R′
e))

2

4Deτ

)

× 1
(4πDhτ)3Nh/2

exp

(
− (Rh −R′

h − 2τDhVh(R′
h))2

4Dhτ

)
, (190)

where e and h denote electron and hole quantities, Ne and Nh are the numbers of elec-
trons and holes, the diffusion constants are defined as De = 1

2me
and Dh = 1

2mh
, where me

andmh are the electron and hole masses in atomic units (i.e., in units of the mass of the electron).

• When particle i is moved, Eq. 15 becomes,

ri = r′i + χ+ 2Diτvi(R′), (191)

where χ is a 3-dimensional vector of normally distributed numbers with variance 2Diτ and zero
mean.

• The probability of accepting this move, Eq. 19 is then,

pi ' min
[
1, exp [(r′i − ri + τDi(vi(R′)− vi(R)) · (vi(R′) + vi(R))]

Ψ(R)2

Ψ(R′)2

]
. (192)

• The effective time step, Eq. 28, is given by,

τeff(α,m) = τ

∑
imipi∆r2d,i∑
imi∆r2d,i

(193)

• The drift vector limiting, Eq. 29, takes the form,

ṽi =
−1 +

√
1 + 4Dia|vi|2τ

2a|vi|2Diτ
vi . (194)

• Separate Jastrow factors must be defined for the electron-electron, hole-hole and electron-hole
interactions. The general form of the cusp condition for Coulomb interactions is,

1
Ψ
dΨ
dr

∣∣∣∣
r=0

=
2qiqjµij

d± 1
, (195)

where qi and qj are the charges in units of the charge of the electron, µij = mimj/(mi +mj) is
the reduced mass and d is the dimensionality. The minus sign is used for distinguishable particles
(e.g., anti-parallel-spin electrons or electron and holes) and the plus sign for indistinguishable
particles (e.g., parallel-spin electrons). When combined with Eq. 96, cusp conditions force
Fij =

√
Aij/2µij for distinguishable paricles, and Fij =

√
Aij/µij for the indistinguishable

case. For 2D (Eq. 97), these become Fij = (Aij/6µij)
2/3 and Fij = (Aij/2µij)

2/3, respectively.

• The kinetic energy term in the local energy is modified to include the mass,

K =
N∑

i=1

Ki =
N∑

i=1

− 1
2mi

Ψ(R)−1∇2
i Ψ(R) . (196)
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Similarly,

Ti = − 1
4mi
∇2

i (ln |Ψ|) = − 1
4mi

∇2
i Ψ
Ψ

+
1

4mi

(
∇iΨ
Ψ

)2

, (197)

and for the drift vector Fi,

Fi =
1√
2mi
∇i (ln |Ψ|) =

1√
2mi

∇iΨ
Ψ

. (198)

• The time steps within VMC for the electrons and holes are set independently. This can be used
to improve the efficiency.

10.26 Pair correlation function calculation for electron/electron-hole sys-
tems

For electron/electron-hole systems (i.e. when etype is specified), CASINO allows the evaluation of
the spherically averaged pair correlation function, defined by

gσ1σ2(r) =
Ω

4πr2

∫
Ω

∑
i,j |Ψ(R)|2 δ(|ri − rj | − r) dR

Nσ1Nσ2

, (199)

where a label σ denotes the type (electron or hole) and spin of a particle, ri is the position and Nσ1

is the number of particles of type σ1, similarly rj is the position and Nσ2 is the number of particles
of type σ2, the sums on i and j run over all Nσ1 and Nσ2 particles respectively and Ω denotes the
volume of the simulation cell. When σ1 = σ2, the sum is replaced by

∑
i,j 6=i.

In practice, g(r) is evaluated during the simulation by accumulating in radial bins that go up to the
Wigner-Seitz radius LWS. The quantity that CASINO actually evaluates is

gσ1σ2(rn) =
Ω

Nσ1Nσ2Vn
〈Kn〉 , (200)

where rn is the radial position corresponding to the nth bin, Vn is the volume of the nth bin and
〈Kn〉 is an average over the simulation of the number of pairs of particles whose distance falls in the
nth bin. In practice this means that at each step of the simulation, N1N2 records of distances are
made (Nσ1(Nσ1 − 1) when σ1 = σ2).

The radial position and volume of the nth bin in 3 dimensions is given by [47]

rn = ∆
n3 − 3

2n
2 + n− 1

4

n2 − n+ 1
3

(201)

Vn = 4π∆3(n2 − n+
1
3
). (202)

Similarly, in 2 dimensions

rn = ∆
n2 − n+ 1

3

n− 1
2

(203)

Vn = 2π∆2(n− 1
2
). (204)

The quantity ∆ is the width of each bin, given by ∆ = LWS
nbin

, where nbin is the total number of bins.

From Eqs. (199) and (200) it follows that the normalization of g(r) is such that∫
Ω

gσ1σ2(r)4πr
2dr ≈

∑
n

Vn gσ1σ2(rn) = Ω
(

1− 1
Nσ1

δσ1σ2

)
. (205)
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To tell CASINO to evaluate g(r), set the pair correlation function flag to .true. and specify the total
number of bins in the heg.data file. All data about g(r) for all particle and spin combinations is then
output at the end of the simulation in the vmc.corr and dmc.corr files. The utility plot corr must be
used in order to obtain g(r) for the desired pair of particle types and to apply correct normalization
to the data.

10.27 Relativistic corrections to atomic energies

Relativistic corrections to the ground state energies of closed shell atoms can be calculated using
first-order perturbation theory, which gives results accurate to the order 1/c2 where c is the velocity
of light. This method works well for atoms of low nuclear charge Z when the relativistic corrections
are small, but is not satisfactory when Z is large. In CASINO the relativistic corrections can be
calculated for VMC method 1 and DMC, by setting the relativistic flag in the input file to ‘T’. By
default the relativistic corrections are not calculated.

First we consider the mass polarization term ε1, which accounts for the correction due to the finite
mass of the nucleus to order 1/M , where M is the nuclear mass in amu. This term is given by

ε1 =
1
M

∑
i<j

vi · vj , (206)

where vi(R) is the drift vector of electron i, vi(R) = Ψ(R)−1∇iΨ(R). By default CASINO uses
nuclear masses averaged over isotopes which are listed in Table 2. If a nuclear mass for a specific
isotope is required, the default setting can be overwritten by the isotope mass keyword in the input
file.

The relativistic terms can be written as a sum of the mass-velocity term, Darwin terms and the
retardation term. The mass-velocity term ε2 arises from the relativistic variation of mass with velocity,
and is written as

ε2 = − 1
8c2

∑
i

(∇i · vi + v2
i )

2. (207)

This term is proportional to the square of the nonrelativistic kinetic energy. The spread of electronic
charge is described by the electron-nucleus and electron-electron Darwin terms ε3 + ε4, which are
expressed together as

ε3 + ε4 =
1

4c2

[∑
i

(∇ivi + 2v2
i )

]
×

−∑
j

Z

rj
−
∑
j<k

1
|rj − rk|

 , (208)

with Z as the nuclear charge. The last term, known as the retardation term ε5, arises from the
interaction between spin magnetic moments which are not mutually penetrating. It is given by the
expression

ε5 = − 1
2c2

∑
i<j

[
(rij · vi)(rij · vj)

r3
ij

+
vi · vj

rij

]
(209)

where rij = ri−rj . Calculations for the beryllium atom [46] show that the total relativistic correction
to the energy is approximately 0.00239Ha, with the mass-velocity term having the greatest contribution
of 0.0145Ha, followed by the Darwin terms of 0.0119Ha.
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11 Making movies with CASINO

11.1 How to make movies

In the input file the following block entry controls the movie making process:

# MOVIES
makemovie : T #*! Make movie (Boolean)
movieplot : 1 #*! Plot every * moves (Inte
movienode : 0 #*! Node to plot (Integer)
moviecells : F #*! Plot nn cells (Boolean)

Set the keyword makemovie to T to enable the movie making facility. You could set movieplot
to an integer greater than 1 so that the particle positions are only written out every movieplot moves.
The node which plots the particle positions are chosen by the keyword movienode, which has to be
zero or a positive integer less than the total number of nodes. If moviecells is set to F then the unit
cell will be plotted, if set to T then nearest-neighbour cells in the (x, y)-plane will also be written.

Type runvmc and an output file movie.out will be produced. This is a file in the standard xyz
molecular format. And example movie.out file will look like:

4
Input geometry

C 0.000000 0.000000 0.000000 5.000000
H -1.407651 -1.138185 0.054434 -1.000000
H 0.894354 0.554315 1.263301 -1.000000
H 0.528074 1.081535 -0.755823 -1.000000

4
Input geometry

C 0.000000 0.000000 0.000000 5.000000
H -1.407651 -1.138185 0.054434 -1.000000
H 0.894354 0.554315 1.263301 -1.000000
H 0.528074 1.081535 -0.755823 -1.000000
(etc.)

Line 1 indicates the total number n of ions and particles. In this case we have 4 particles. Line 2 is
a line of comment. The following n lines consist of 5 columns. Column 1 specifies the type of particle
(H = electron, O = hole and C = other atoms - of course this labelling is silly for our purposes, but
we didn’t invent the format). Columns 2, 3, 4 are the x, y, z coordinates of the particle. Column 5
specifies the charge of the particle. This information is then repeated for the number of times specified
in the CASINO input file. For example if we run a vmc calculation for nequil = 2, nblock = 1,
nmoves = 2 and movieplot = 1, then 5 sets of geometry will be created in the movie.out file.

11.2 Visualisation

Having generated the movie.out file we are now able to visualise the results with VMD or Jmol.

11.2.1 VMD

VMD (Visual Molecular Dynamics) is a molecular visualization program. It supports computers
running MacOS-X, Unix, or Windows, is distributed free of charge, and includes source code. VMD
can be downloaded from the following website: http://www.ks.uiuc.edu/Research/vmd/

• Type vmd; a ‘VMD console’ and a ‘VMD Display’ window will appear.

• In the ‘VMD console’ window type menu main on. An extra ‘VMD Main’ menu bar will appear.

• On the ‘VMD Main’ menu bar, click on File → New Molecule. A ‘Molecule File Browser’
will appear.
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• In the ‘Molecule File Browser’, browse for the file movie.out and choose the file type to be xyz.
Click Load to open the file.

• On ‘VMD Main’, click on Graphics→ Representations. A ‘Graphical Representations’ menu
bar will pop up. Choose CPK as the drawing method, the bond resolution to be 1 and the
sphere resolution to be 15. Click Apply.

• On ‘VMD Main’, click on Extensions → vmdmovie. (For version 1.8.3, click on Extensions
→ Visualisation → Movie Maker.) A ‘VMD Movie Generator’ will pop up.

• In Movie Settings choose Trajectory. The movie can be saved in the AVI or MPEG format.
Choose by clicking on Format and tick the preferred format. Then check whether the the name
of the temporary directory suggested is right (this is where the RGB files are created). Note
that this directory should be free of RGB files belonging to other users. If this has to be changed
then click on the Set working directory button and browse for the directory.

• Type in the name of the movie in the box provided. Click on the Make Movie button.

• The movie will be displayed in the Open GL Display screen. The .mpg or .avi movie file
will be produced in the working directory being specified. They have to be viewed with other
viewers, for example mpeg play for .mpg files.

For an example movie made with VMD (a CASINO VMC simulation of cyclohexane) see
www.tcm.phy.cam.ac.uk/∼mdt26/downloads/cyclohexane2.mpg .

11.2.2 Jmol

Jmol is a free, open source molecule viewer. It supports computers running Windows,
Mac OS X, and Linux/Unix systems. Jmol can be downloaded from the following website:
http://jmol.sourceforge.net/

• Type ‘jmol’. Click on File→ Open. Browse for the file movie.out and click Open.

• Click on Display and untick the box for Bonds.

• Click on Extras → Animate. An animation tool bar will appear. To start the movie click on
the ‘play’ symbol.
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12 Using CASINO with the CRYSTAL program

[see CASINO/utils/wfn converters/crystal 9x and crystal 03]

12.1 The CRYSTAL program

CRYSTAL is a commercially available quantum–mechanical electronic structure package which is able
to calculate the electronic structure both of molecules and of systems with periodic boundary condi-
tions in 1, 2 or 3 dimensions (polymers, slabs and crystals) using either Hartree-Fock or density func-
tional theory. The latest version of the program was written by Roberto Dovesi, Vic Saunders, Carla
Roetti, Roberto Orlando, Nic Harrison, Claudio Zicovich-Wilson, Klaus Doll, Bartolomeo Civalleri,
Ian Bush, Philippe D’Arco and Miquel Llunell. See www.tcm.phy.cam.ac.uk/∼mdt26/crystal.html
and the various links thereon for more information.

CASINO supposedly supports the official releases CRYSTAL95, CRYSTAL98 and CRYSTAL03 (but
not 88 or 92). Later versions of CRYSTAL03 contain a routine which will write out a CASINO
gwfn.data file firectly. If you want to use CRYSTAL95 or CRYSTAL98, then you must use a separate
utility crystaltoqmc which transforms the output of CRYSTAL into a gwfn.data file.

12.2 Generating gwfn.data files with CRYSTAL95/98 and crystaltoqmc

The utility crystaltoqmc (written by MDT) together with the driver script crysgen is used to convert
the output of CRYSTAL98 into a gwfn.data file readable by CASINO. I will assume you know how
to run the CRYSTAL program—I am aware this is a big assumption. You need to run the program
using the run script, which lives in CASINO/wfn converters/crystal9x/run script, using the -qmc
flag as an argument (this should be set up automatically for you during utilities compilation). The
publicly available run script on MDT’s CRYSTAL web site does not contain this flag, so you need to
use the script included with CASINO instead. You will need to change some environment variable
definitions in the run and crysgen scripts to get them to work properly on your system.

If you want to use your own copy of CRYSTAL95 or CRYSTAL98 to generate QMC wave func-
tions, you will need to make some minor modifications to the source code (see the accompanying
CASINO/wfn converters/crystal to qmc/README CHANGES file).

(NOTE : 4/2003 - the above changes involve turning off the use of symmetry in k space - for some
*metallic* calculations this seems to cause a problem (Gilat net?) unless you also manually turn off
all symmetry in the input file with the keyword SYMMREMO. This might be fixed one day.).

CRYSTAL will produce three binary files in the scratch directory you define in the run script—
namely fort.12 (basis set, geometry, common variables), fort.10 (orbital coefficients) and fort.30
(eigenvalues). These files would normally be deleted at the end of a CRYSTAL run. Including
the -qmc flag as an argument to the run script means these files will be grabbed and renamed
as silicon.f12, silicon.f10 and silicon.f30 (or whatever). They will be kept in the scratch
directory since they can become very large.

Sit in the directory where these three files live and type ‘crysgen’. This will run the crystaltoqmc
program, which will ask you some questions then generate the gwfn.data file.

crystaltoqmc will ask you for the size of the Monkhorst-Pack k-point net in the CRYSTAL cal-
culation, and the desired size of supercell in the QMC calculation. These need not be the same
(if not, you are ‘plucking’ to use the local vernacular) but the former must be divisible by the
latter. For example, 12×12×12 MP net in CRYSTAL will allow you to generate gwfn.data for
1×1×1,2×2×2,3×3×3,4×4×4 and 6×6×6 supercell cases. Note that it is desirable to carry out the
calculation on a higher density k-point grid than you actually need so that the orbital coefficients are
calculated accurately.
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Note that for polymer and slab calculations the last one and two numbers in the MP net and supercell
specifications should be 1 to reflect the fact that the system is not periodic in those dimensions. For
example, polymer (12×1×1 −→ 1×1×1, 2×1×1, 3×1×1, 4×1×1, 6×1×1) slab (12×1×1 −→ 1×1×1,
2×2×1, 3×3×1, 4×4×1, 6×6×1) For molecular calculations, just imagine you have a 1×1×1 MP net.

So, to summarize, to produce gwfn.data from the crystal input file dna:

% run -qmc dna

the -qmc flag invokes generation of relevant QMC files in temp

% cd /temp/mdt

or whatever the temp directory is called in your CRYSTAL run script

% crysgen

then answer the questions

% mv gwfn.data ∼ ; rm dna.*

then run CASINO

12.3 Generating gwfn.data files with CRYSTAL03

The gwfn.data file can be generated directly using the CRYSTAL03 properties program. Note that
this facility only exists in the official version of CRYSTAL in binaries produced after December 2003,
and that some early versions of CRYSTAL03 had a broken pseudopotential evaluator (which should
now be fixed).

The CRYSTAL run script included with CASINO will actually force the production of gwfn.data
automatically if you invoke it with the -qmc flag when running the calculations i.e. all you need to
is type run -qmc input filename. If the calculation is periodic, the script will ask you how many
different supercell sizes N you wish to generate, and then to input N sets of integer triplets indicating
the supercell sizes (these must be a subset of the MP shrinking factors in the CRYSTAL input file).
For example

% run -qmc h

Number of different QMC supercell sizes to calculate? (Maximum 5)

% 1

Size of cell 1? (e.g. 2 2 2)

% 2 2 2

Put the script in the background with ’Ctrl-Z’ then ’bg’.

If you want to do this by hand, rather than letting the run script do it for you, then the relevant
part of the CRYSTAL properties input file looks like this (for periodic systems):

QMC
2 ! want to generate 2 supercell sizes i.e.
2 2 2 ! a 2x2x2 one
3 3 3 ! and a 3x3x3 one
END

For molecules, only the keyword ‘QMC’ is required with no additional input.
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13 Using CASINO with the Gaussian94/98/03 programs

[see CASINO/utils/wfn converters/gaussian9x-03]
Gaussian is an extremely large and widely-used commercially available quantum chemistry package.
More details are available from www.gaussian.com.

gaussiantoqmc is a utility to read the wave function from the output of a Gaussian94/98/03
(G94/G98/G03) calculation and output it in a form compatible with CASINO. gaussiantoqmc was
originally written by Andrew Porter (2000). Note that there is an associated utility called egaussian
which extracts the SCF energy (and components) from a Gaussian output file.

The gaussiantoqmc code requires the existence of a formatted checkpoint file (produced by putting
FormCheck=(MO,Basis) in the route section of the Gaussian job file for G94/G98, produced
automatically by G03). It expects this file to have a ‘.Fchk’ suffix. The output file of the Gaus-
sian job is also required. It is assumed that this has a ‘.out’ suffix. If the original Gaussian job
file is present then it will be appended to the end of the QMC input file (as is the Gaussian output file).

13.1 How to use gaussiantoqmc

If you have a Gaussian job file called dna (say) and run it to produce dna.out and Test.FChk then
you must:

> mv Test.FChk dna.Fchk

run gaussiantoqmc . . . and follow the prompts

> mv dna.qmc gwfn.data

run CASINO

The code should automatically detect what sort of Gaussian job it is and give you the opportunity
to construct an excited-state wave function if applicable.

It can deal with the following sorts of calculation:

• HF and DFT ground states, open and closed shell.

• CIS excited states, open and closed shell.

• CASSCF states. Getting Gaussian to output these can be problematic for large calculations. It
is possible that gaussiantoqmc will get confused if you use some combination of IOps other than
those described in Section 13.2.5.

• Time-dependent HF (TD-HF) or DFT (TD-DFT) excited states.

If the user chooses to output a CIS or TD-DFT wave function, they are given the option of resumming
it. The wave function must also be resummed if the user wishes to analyse its composition. As
distributed, gaussiantoqmc will not do this analysis but if you wish to switch this option on then the
flag analyse cis in “cis data.f90” must be set to .true. and gaussiantoqmc recompiled.

With this flag set the code evaluates the percentage contribution of each single excitation to the CIS
expansion. Degenerate virtual and occupied orbitals are identified and their contributions summed.
The final output takes the form of files called “fromi j.dat” where i–j indicates a range of degenerate
occupied orbitals (if i = j then i is a non-degenerate orbital). These files detail all excitations out
of the specified orbitals along with a percentage giving their contribution to the CIS expansion as a
whole. The sum of the percentages (final column) from each of the “fromi j.dat” should be 100 if
everything is working OK.
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13.2 Other features of gaussiantoqmc

The code also contains some crude normalization and plotting routines that are really just debugging
aids. By setting the flag test=.true. in gaussiantoqmc.f90 and recompiling, the user is given the
option of plotting and testing the normalization of individual molecular orbitals. The axis along which
the plotting is done is set in wfn construct.f90 and this must be hacked if the user wishes to change
things.

13.2.1 Getting Gaussian to do what you want

In principle, Gaussian can do an awful lot of things. In fact, some of these things seem to require
magical incantations. These will be described in this section, broken down into the different calcu-
lations to which they apply. The comments on G98 refer to revision A9 and may depend on which
version is used.

13.2.2 General bits and pieces

Some points to note:

• Both G94 and G98 appear to have have formatting errors when printing out the Gaussians used
in the ECP expansion—large exponent values are replaced with stars. This does not affect the
subsequent calculation.

• G94’s ECP (pseudopotential) package will not accept expansions containing more than 13 Gaus-
sians per angular-momentum channel.

• G98’s ECP integral package crashes when one attempts to do a large (both in terms of basis
and ECP expansion) calculation with symmetry switched on. The solution to this is to switch
symmetry off using “Nosymm”.

• One cannot use basis functions containing g and higher basis functions with a pseudopotential
in G94.

• Obviously, gaussiantoqmc needs the molecular orbitals (MOs) produced by the calculation.
It gets these from the formatted checkpoint file which is produced by putting “Form-
check=(Basis,MO)” in the route section of the Gaussian job. Alternatively, it may be obtained
from the binary checkpoint file (.chk) using the formchk utility— see the Gaussian manual.

• Many (but not all) of the IOp’s mentioned here are described on Gaussian’s website at:

http://www.gaussian.com/iops.htm

13.2.3 CIS

• Performing a “HF test” for an excited state: It is possible to get Gaussian to output
a breakdown of the energy of a CIS excited state which may be compared with the results of
a determinant-only VMC run. The key to this is the density used to perform the population
analysis and other post-SCF calculations. By default, Gaussian uses the density produced by
the original SCF run. To get the kinetic, nuclear-nuclear potential and electron-nuclear potential
energies you must tell it to use the one-particle CI density via “density=RhoCI”. You must also
specify the excited state that you are interested in via “Root=N” in the CIS options. With all
of this done properly, Gaussian produces some output like:

N-N= 6.9546274D+00 E-N=-2.3781323D+01 KE= 3.3771062D+00

(units of Ha) which is hidden in the density analysis right at the end of the output.

• Some trouble has been encountered with the “Add=N” option to CIS (which reads converged ex-
cited states from the checkpoint file and then calculatesN more). The IOp alternative which does
work is IOp(9/49=2) (use guess vectors from the checkpoint file) combined with IOp(9/39=N)
(make N additional guesses to those present).
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• Using the “50-50” option to CIS to calculate singlet and triplet excitations simultaneously can
cause problems. It appears best to do the singlet (“singlets”) and triplet (“triplets”) calculations
separately.

• For QMC, we want the complete CIS expansion. Gaussian may be persuaded to output all
excited states with coefficients > 10−N by using IOp(9/40=N). Typically N = 5 is good
enough. gaussiantoqmc outputs the sum of the square of the coefficients so that the user can see
how complete the wave function is. (Standard Gaussian output has the coefficients normalized
so that their sum of squares for a complete expansion should be unity.)

13.2.4 CISD

Although gaussiantoqmc cannot read a CISD wave function it might be worth mentioning that
IOp(9/6)=N is equivalent to MAXCYCLE=N for such a calculation.

13.2.5 CASSCF

• As described in Foresman and Frisch’s book [34], getting CASSCF to converge for a singlet state
is difficult. The following procedure normally works:

1. Run a ROHF calculation for the lowest triplet state of the system and save the checkpoint
file.

2. Run CASSCF for the second triplet state (“Nroot=2”) taking the initial guess from the
checkpoint file. (Gaussian calculates the first and second triplets but converges on the
second.)

3. Run CASSCF for the first triplet (“Nroot=1”) taking the initial guess from the checkpoint
file.

4. Run CASSCF for the singlet excited state (“Nroot=2”) taking the initial guess from the
triplet checkpoint file.

5. Finally, run CASSCF for the singlet ground state (“Nroot=1”).

• By default, Gaussian uses spin configurations (combinations of Slater determinants) in a
CASSCF calculation. It is best to converge the CASSCF state that you want using this option.
However, for input to the QMC code, the wave function must be in terms of Slater determinants.
In principle, the “SlaterDet” option to CASSCF will do this but I never succeeded in getting it
to work. Instead, specifying IOp(4/21=10) does the trick, as does IOp(4/46=3).

• For large CASSCF calculations (which in Silane equates to an active space of more than six
electrons and eight orbitals) the Cray T3E (Turing) at Manchester does not have enough memory
per node and simply cannot be used.

• For large CASSCF calculations on the alpha cluster Columbus, the diagonalization method must
be changed by specifying IOp(5/51=1).

• In large CASSCF calculations where very many determinants are involved, Gaussian currently
only prints the first fifty determinants in the expansion (those with the largest coefficients).
The significance of the truncation may be judged by looking at the sum of the squares of the
coefficients that gaussiantoqmc outputs when it reads the wave function. Unfortunately, this
truncation prevents a full “HF test” (i.e., running the wave function in VMC without a Jastrow
factor and checking that the result agrees with that of Gaussian) but the energy returned by
such a test should be above that reported by Gaussian.

• As well as this truncation to fifty determinants, Gaussian has a formatting error which means
that if the index number of a determinant is greater than 99,999 then it is replaced by stars
and is thus useless. gaussiantoqmc deals with this by simply throwing away such configurations
which further truncates the expansion.
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• Gaussian switches to direct mode for large CASSCF calculations and in doing so automatically
stops printing the definitions of the Slater determinants used in the calculation. In order to
reconstruct the wave function we do of course need to know what the Slater determinants are.
Gaussian may be persuaded to print them by using IOp(4/46=3) IOp(4/21=10) IOp(4/21=100).
The first two of these both tell Gaussian to use Slater determinants (I specified both to be on
the safe side) and the last one in theory tells it to “just print the configurations” although in
actual fact it still proceeds to do the calculation as well.

• Restarting a CASSCF calculation from a previously converged run fails when symmetry is
switched on. Use “Nosymm” to avoid this problem.

13.2.6 TD-HF and TD-DFT

As far as converting the resulting wave function for use in CASINO is concerned, these two methods
are no different to CIS apart from the issue of normalization. In CIS, the default output is normalized
such that the sum of the squares of the coefficients is equal to unity. In a TD-HF or TD-DFT
calculation (which involves solving a non-Hermitian eigenvalue problem) a different scheme is used
which essentially means that the sum of the squares of the coefficients is arbitrary.

It should also be noted that Gaussian cannot do gradients within TD-DFT yet and so cannot relax
excited states.
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13.3 Summary of routines used in gaussiantoqmc

Routine Purpose
analyse cis state Break the selected CIS/TD-DFT state down into excita-

tions from each distinct occ. MO
awk like Module and subroutines to give AWK-like functionality.

Used in parsing the Gaussian output files
cas wfn Brings each of the CAS configurations into maximum co-

incidence with the reference configuration and (optionally)
calls resum cas

cas write Outputs the CAS wave function (i.e., the determinant ex-
pansion) to the gwfn.data file

cis data MODULE—holds data defining the CIS and other multi-
determinant wave functions

con coeffs Multiplies the common part of shell normalization factors
into the contraction coefficients and adjusts their storage
for improved accessibility

fatal Echoes a string and then kills the program
g94 wave function MODULE—holds the data about the type of Gaussian run

as well as the data defining the MOs etc.
gaussiantoqmc Main driver unit
g d type Evaluates a primitive d-type Gaussian basis function at a

specified location in 3D space
g s type Evaluates a primitive s-type Gaussian basis function at a

specified location in 3D space
get gauss version Reads the Gaussian output file and identifies whether it is

from Gaussian 94 or Gaussian 98
integ params MODULE—holds parameters defining granularity of plot-

ting and integration grids as well as which MO to plot/test
max coincidence Brings a CIS configuration into maximum coincidence with

a specified ‘reference’ determinant
normalisation check Tests the normalization of a specified MO
normalise ci Normalizes the CIS expansion. Not necessary for QMC but

keeps things tidy and output gives an idea of how complete
the expansion is

numsrt Sort an array into descending (numeric) order and (option-
ally) keep track of reordering

numsrt 2way As for numsrt but has additional argument to specify as-
cending or descending order

numsrt signchange As for numsrt but returns an associated sign change given
by multiplying by −1 for each exchange

pack evcoeffs Stores the alpha and beta eigenvector coefficients separately
and multiply in remaining normalization factors (which dif-
fer between dxx,dx2−y2 etc.)

paramfile MODULE—contains define pi and also defines conversion
factors for Ha to eV and Bohr to Angstrom

psi Evaluates an MO of a given spin at a specified point in
space
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Routine Purpose
qmc write Writes the “gwfn.data” file
re sum Resums a CIS/TD-DFT wave function
read G9xout Reads the output file produced by the Gaussian job. Gets

the nuclear-nuclear potential energy, CIS/TD-DFT/CAS
expansion (if present) and HF eigenvalues

read fchk Reads the formatted checkpoint file produced by the Gaus-
sian job. Gets the MOs etc.

rejig MODULE—contains numsrt and hence prototypes it which
is necessary because it has an optional argument

resum cas Partially resums a CAS expansion
set parameter values Sets the value of Pi and related constants
shell centres Identifies the positions of the distinct shell centres and store

the first shell index corresponding to each
sum degen excite Called by analyse cis. Loops over excitations out of a

given range (i–j) of (degenerate) occ. MOs and sums those
that correspond to degenerate final (virtual) MOs. Outputs
the results to a “fromi j.dat” file.

user control Calls the major reading routines and asks the user about
excited states and resumming

wfn construct Plot an MO (debugging option). Called by wfn test
wfn test Asks user about plotting and normalization testing. Op-

tionally calls wfn construct and normalization check.
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14 Use of localized orbitals and bases in CASINO

14.1 Theoretical background

14.1.1 Introduction

The rate-determining step in practical QMC calculations is the evaluation of the orbitals in the Slater
part of the trial wavefunction after electron moves15. We explain how the CPU time for evaluating
the orbitals can be made essentially independent of system size. This makes it feasible to simulate
systems of hundreds of electrons with sufficient accuracy to resolve their optical gaps.

14.1.2 “Standard” QMC

Let us assume that in “standard” QMC the orbitals are HF or DFT eigenfunctions extending over
the entire system, and that the basis functions also extend over the entire system, as is the case with
a plane-wave basis or even with a Gaussian basis if the Gaussians are not truncated16.

Let N be the system size (number of electrons). In standard QMC, after each electron move,
we must update O(N) orbitals17 expanded in O(N) basis functions. Hence the time taken for a
configuration move of all the electrons scales as O(N3).

14.1.3 Localized orbitals

It is easy to show that a nonsingular linear transformation of a set of orbitals can only change the
normalization of the Slater determinant of those orbitals.

Consider a set of Bloch orbitals for a periodic system. There exist efficient algorithms for computing
the transformation from Bloch orbitals to so-called maximally-localized Wannier functions [40, 41].
The transformation from Bloch to Wannier functions is unitary, so the orthogonality of the orbitals
is preserved.

Wannier orbitals are spatially localized, so they can be truncated to zero when sufficiently far from
their centres. Therefore, when an electron is moved, only a few orbitals need to be evaluated; the
others are zero because the electron is outside their truncation radii. So the number of orbitals to be
computed is O(1).

Although the Wannier functions are localized, they are not rigorously zero at their truncation
radii. Hence their truncation results in small discontinuities in the Slater determinant. These are
potentially serious for QMC because they result in the presence of Dirac delta functions in the kinetic
energy integrand. The delta functions cannot be sampled, so their contribution to the total energy
is lost. However, in practice, the resulting bias is extremely small provided the truncation radii are
sufficiently large.

The discontinuities can be avoided if the orbitals are truncated smoothly over spherical shells by
multiplying them by polynomials that are equal to one at “inner truncation radii” and zero at “outer
truncation radii”.

14.1.4 Localized bases

Suppose the basis functions are zero outside fixed radii about their centres. Then the only functions
that have to be evaluated when an electron is moved are those with the electron inside their radii. So
the number of basis functions to be computed simply depends on the local environment of the electron
and is therefore independent of system size.

Gaussian basis functions can be regarded as localized if they are truncated to zero outside a certain
radius. This is done by default in CASINO: Gaussian functions exp(−ar2) are assumed to be zero
when exp(−ar2) < 10−GT , where GT is the gautol input parameter. Gaussian basis sets cannot yet
be used in conjunction with localized orbitals, however.

15The time spent updating the cofactor matrices will in principle dominate in the limit of large system size, but this
limit is not reached in practice.

16In CASINO, the Gaussian basis functions are truncated.
17The Slater part of the wavefunction is written as the product of Slater determinants for spin-up and spin-down

electrons. After the move of a spin-up electron, the number of orbitals to be evaluated is equal to the number of spin-up
electrons; after the move of a spin-down electron, the number to be evaluated is the number of spin-down electrons.
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On the other hand, orbitals can be represented numerically using splines on a grid. If the orbitals
are localized then the memory requirements are greatly reduced because we only have to store the
spline coefficients needed to evaluate the orbital within its truncation radius.

14.1.5 “Linear-scaling” QMC

If the numbers of orbitals and basis functions to be evaluated are both O(1) then the CPU time for a
configuration move scales as O(N). This is what is meant by “linear-scaling QMC”. Note, however,
that the number of configuration moves required to achieve a given error bar scales as O(N); hence,
in practice, “linear-scaling” QMC calculations scale as O(N2) and it is better to refer to them as
“quadratic scaling” calculations. This has not however been the practice in the literature.

14.2 Using CASINO to carry out “linear-scaling” QMC calculations

14.2.1 Generation of Bloch orbitals

At present the Bloch orbitals must be represented in a plane-wave basis. A plane-wave DFT or HF
code should be used to generate a pwfn.data file as though an ordinary QMC calculation with a
plane-wave basis were to be carried out.

Note that the following restrictions apply:

1. The simulation cell must be orthorhombic;

2. The same orbitals must be available for spin-up and spin-down electrons;

3. Only one k-point may be used: the Γ-point.

The first two restrictions may be lifted in a later release.

14.2.2 Transformation to Wannier orbitals

The xwannier utility written by R. Q. Hood can be used to generate maximally-localized Wannier
functions using the method of Berghold et al. [41]. This program requires a pwfn.data file along with
an input wannier file of format:

4 ! No. init. states included in Wannier transform
.TRUE. ! Compute Wannier functions
.FALSE. ! Print additional files. If false, cannot restart
1d-12 ! Tol. of converged Wannier functions. Default is 1d-12

1. The first line allows the user to specify the orbitals to be included in the Wannier transforma-
tion: these are the first orbital in pwfn.data up to the number given. If one is interested in
ground-state calculations then all of the orbitals up to the highest-occupied orbital should be
transformed. If, on the other hand, one is interested in calculating optical gaps then it is essen-
tial that both the highest occupied and lowest unoccupied orbitals are not transformed, since
the trial wavefunction for the first excited state is generated by replacing the highest occupied
orbital with the lowest unoccupied one.

2. The second line should always be set to .true..

3. It is possible to restart xwannier if the third line is set to .true..

4. The fourth line contains the localization tolerance. The default of 10−12 is usually adequate.

The output of xwannier is a pwfn.data.wannier file, of the same format as pwfn.data, holding
the Wannier orbitals expanded in a plane-wave basis. A second file, called wannier centers.dat, is
also produced. This holds the Cartesian coordinates of the Wannier centres.
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14.2.3 Representing orbitals with splines

The input for generate spline consists of: a pwfn.data file (with the restrictions listed above); an
optional wannier centers.dat file; and a generate.dat file.

The pwfn.data file should usually be the (renamed) pwfn.data.wannier generated by xwannier.
The corresponding wannier centers.dat file should also be supplied. However, it is possible to
bypass the Wannier transformation and generate a spline representation of Bloch orbitals. In this
case no wannier centers.dat file is required and the pwfn.data file with the Bloch orbitals should
be used.

The format of the generate.dat file is shown below:

.false. ! Plot out the truncated, splined orbitals
2.d0 ! Multiplication factor of the FFT grid
1 ! 1=> spherical cutoff, 2=> cuboidal cutoff
1 ! 1=> Use norm, 2 => Use fixed diameter
0.997d0 ! Cutoff criterion (if set to 1 above)
10.d0 ! Fixed cutoff diameter (au) (if set to 2 above)
0 ! No. of states for which the whole box is to be used
0.05d0 ! Minimum shell width (au)
2 ! Verbosity level

1. If the first line is set to .true. then plots of the splined orbitals in the x-, y- and z-directions
through the Wannier centres (or the origin for Bloch orbitals) are produced.

2. The second line controls the fineness of the real-space spline grid. The pwfn.data file holds
plane-wave coefficients on a cuboidal array of reciprocal lattice vectors. The orbital is evaluated
at a grid of points in real space using an inverse fast Fourier transform. The real-space grid
spacing in a particular direction is given by 2π over the length of the cuboid in the corresponding
direction in reciprocal space. So the easiest way to increase the fineness of the real-space grid
is to enlarge the cuboid by including extra reciprocal lattice vectors with zero coefficients. The
parameter on the second line is the factor by which the cuboid is enlarged in each direction;
hence, for example, doubling it has the effect of doubling the fineness of the real-space grid in
each direction, giving eight times as many grid points.

3. The third line specifies whether the truncation surfaces of the localized orbitals are spherical
(1) or cubic (2). Note that smooth truncation can only be applied if the truncation surfaces are
spherical.

4. The fourth line allows the user to choose the method for determining the truncation radii. If
this line is set to 1 then the truncation radius for each orbital will be chosen so that a certain
percentage of the square of the orbital norm lies inside it; if set to 2, then the user specifies a
fixed radius for all the orbitals.

5. The fifth line holds the desired fraction of the norm squared to be contained within the inner
truncation radius. It is ignored if the previous line is set to 2.

6. The sixth line holds the fixed inner truncation diameter in a.u. if the fourth line is set to 2. If
the fourth line is set to 1 then the sixth line is used as an initial guess at the inner truncation
diameter.

7. The seventh line holds the number of orbitals NE that are not to be truncated. If NE > 0 then
the orbitals that are not truncated must be listed on the next NE lines. If NE < 0 then no
orbitals will be truncated.

8. The eighth18 line holds the minimum permitted thickness (in a.u.) of the shell region (between
the inner and outer truncation radii), for the smooth truncation of localized orbitals.

18Assuming NE = 0.
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9. The ninth line controls the amount of output, from 1 (minimal) to 4 (for debugging). If it is set
to 2 or above then useful information about the kinetic energy of the truncated and untruncated
orbitals is provided. The difference between the total kinetic energies of the truncated and
untruncated orbitals (occupied appropriately) gives the order of magnitude of the likely biasing
due to the discontinuities in the trial wavefunction resulting from abrupt truncation. It should
be ensured that this bias is much less than the desired QMC error bar.

The splined, truncated orbitals can be generated independently. Correspondingly,
generate spline can be run in parallel if desired. It uses the MPI library.

The output of generate spline is a swfn.data file containing the splined orbitals and geometry
information. If the verbosity level is set to 3 or above then information about the location of the
truncation radii will be placed in output files for each processor. If requested, the plots of the orbitals
are placed in files with names such as plotx.003 (containing a plot along the x-direction through the
centre of orbital 3).

The swfn.data file is unformatted. There exists a utility called format spline that reads in a
swfn.data file and produces a formatted swfn.data.formatted file, and vice versa. This is useful if
swfn.data is to be transferred from one platform to another. It is also possible to insert a title in the
formatted file, if desired.

14.2.4 Running a QMC calculation

The swfn.data file can now be used by CASINO. The usual input files (input, jastrow.data and
pseudopotentials) should also be supplied. The btype input parameter should be set to 6.

Please note the following:

• The isperiodic input parameter may be set to either .true. or .false.. In the former case,
the orbitals are evaluated using the minimum image of the distance to the Wannier centre, and
a periodic electron-electron interaction is used. In the latter case, the contents of the simulation
cell are treated as a finite system. Although the original orbitals were represented in a periodic
plane-wave basis, once the localized orbitals have been constructed, represented by splines and
truncated, we may dispense with the periodicity.

• An explicit list of the occupied orbitals must be provided using statelist up and
statelist down blocks in the input file. For example:

%block statelist_up
1 2 3 4
%endblock statelist_up

means that orbitals 1, 2, 3 and 4 are occupied by spin-up electrons. An excited state could be
specified by replacing the 4 with a 5.

This differs from the way in which excitations are specified for plane-wave and Gaussian orbitals.
The contents of the wavefunction block are ignored.

• There are two ways of storing the spline coefficients of localized orbitals. They can be stored in
“pointer arrays” which are specially allocated for each occupied orbital, or they can be stored
in a single array with an index for the orbital.19 The former method permits the memory
requirements to be tailored to the appropriate size for each orbital; however, pointer arrays are
relatively slow to look up. The latter method is faster but not so memory-efficient because the
size of the array is determined by the size of the largest orbital.

• The bsmooth input parameter is used to specify whether localized orbitals with spherical trun-
cation surfaces should be abruptly or smoothly truncated. If it is set to .false. then the abrupt
truncation occurs at the outer truncation radius.

• For large systems it is advisable to set the sparse input parameter to .true. in order to exploit
the fact that most of the orbital values are zero when updating cofactor matrices.

19In fact two arrays are used: one for the truncated orbitals and one for the untruncated orbitals. Since only one or
two orbitals are left untruncated, using separate arrays for “large” and “small” orbitals allows a big memory saving to
be made.
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15 Using CASINO with Blip functions

15.1 Blip functions

Blip functions were devised by Mike Gillan and implemented in CASINO by Dario Alfé [35].

15.2 The blip conversion utility

The blip utility is used to convert pwfn.data files generated by a plane-wave DFT package into
bwfn.data files where the wave function is represented in a basis set of localized ‘blip functions’ on a
grid. This should make the code go faster and scale better with system size than plane-waves, which
are horrible for QMC calculations. It can require a lot of memory and disk though.

See CASINO/utils/wfn converters/pw to blips.
The quality of the blip expansion can be increased with the input parameter xmul (the converter

will ask you about this when it is run). This results in an increasing number of blip coefficients, so a
larger memory occupancy in CASINO (but the CPU time should be the same).

To test the quality of the blip expansion set ltest = .t.’ when the converter asks you about it.
The converter then samples the wave function, the Laplacian and the gradient at 1000 points in the
simulation cell and computes the quantity:

α =
〈BW‖PW 〉√

〈BW‖BW 〉 〈PW‖PW 〉

The closer to 1 this quantity is the better the representation. Through increasing xmul one should
always be able to get alpha as close to one as wanted.

The gain in speed with respect to plane waves should be of the order of nPW/64.

15.3 The blipl conversion utility

Localized orbitals (see Section 14) can also be represented in terms of blips. In order to do this we
require a pwfn.data file, a wannier centers.dat file and a blip input file. In the blip input file we
need to specify the multiplication factor which defines the fineness of the blip grid; we suggest using
values greater than one. Multiplication factors of at least two may be needed in some cases in order to
get accurate VMC energies, but this is less of an issue in a DMC calculation. The second entry in the
input file is a flag which, if set to .true., allows some testing of the quality of the blip representation
(see Section 15.2 for more details). The third entry is the number of localized states. If this is lower
than the total number of states than the remainder will be treated in the usual non-localized way,
and the blip grid extends over the whole system for those states. The fourth entry is a starting guess
for the radius of the (spherical) localization region, and the fifth is the percentage of the norm of the
orbital contained in the localization region. Finally, the sixth entry is the thickness of the shell region
over which the orbital is smoothly truncated to zero.

Type blipl to run the utility to produce a blwfn.data file.
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16 Using CASINO with other supported programs

16.1 TURBOMOLE

See the README file in CASINO/utils/wfn converters/turbomole

16.2 CASTEP 2002

See the README file in CASINO/utils/wfn converters/castep

16.3 PWSCF

See the README file in CASINO/utils/wfn converters/pwscf

16.4 ABINIT

See the README file in CASINO/utils/wfn converters/abinit

17 Using CASINO with unsupported programs

If the program in question uses Gaussian, plane-wave or blip basis sets, then write your own converter
to write the output of the program in the appropriate [x]wfn.data format and send it to us (mdt26
at cam.ac.uk) for inclusion in future releases. It may be a stand alone program, or a routine to be
inserted into the electronic structure package in question.

If your program uses some other basis set, then this could be a major project. Please ask.
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18 Utilities provided with the CASINO distribution

A large variety of little programs which do useful things are provided in the CASINO/utils directory.

Here is a reasonably current list of them. No other documentation is provided here—there may be
some in the appropriate directory somewhere in utils.

• abinit to casino pp : Converts pseudopotentials for the ABINIT program into CASINO for-
mat.

• billy : Shell script for optimizing basis sets and geometrical parameters with CRYS-
TAL95/98/03. Reasonably vital for developing decent trial wave functions for CASINO with
these programs.

• casinokill : Utility for killing CASINO cleanly on workstations (sorting out the scratch disk
etc..).

• casino to abinit pp : Converts CASINO pseudopotentials into the correct format for the
ABINIT program.

• clearup : Script for cleaning up after CASINO by removing stray output and indicator files.

• dfit : Draw a polynomial through a set of energy points and find the minimum (lives in the
billy distribution but can be used on its own).

• density plotter : Three programs : denconvert, d2rs, plot density
The denconvert script runs d2rs which converts the density.data file (density expanded in
plane waves) into a real space density on a grid. This can be converted into a data format
readable by gnuplot using the plot density utility.

• extrapolate N : Extrapolate HEG energies to infinite electron numbers using a chi-squared fit
to Ceperley’s extrapolation formula [36]. Documentation available in the relevant directory.

• extrapolate N eh : As above for electron-hole systems.

• extrapolate tau : Program to extrapolate DMC energies to zero stepsize by fitting a polyno-
mial form to the DMC energy as a function of stepsize. Documentation in the relevant utils
directory.

• format configs : Format an unformatted config.in file−→ config.in formatted (or vice versa).

• format pos : Format an unformatted vmc.posin file −→ vmc.posin formatted (or vice versa).

• format spline : Utility for formatting/unformatting swfn.data files.

• format varmin coeffs : Format an unformatted varmin coeffs.data file −→
varmin coeffs.data formatted (or vice versa).

• generate spline : Utility to construct a spline interpolation in 3D.

• graphit : Plot energy vs move data from a DMC run (i.e., the numbers in dmc.hist) in an
xmgr plot.

• help : Simple script to invoke the CASINO help system.

casinohelp <casino_keyword> : tells you the definition and type of keyword
casinohelp search <text> : finds <text> in descriptions of all keywords
casinohelp all : lists all possible keywords
casinohelp basic : lists all basic level keywords
casinohelp inter : lists all intermediate level keywords
casinohelp expert : lists all expert level keywords
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• ion dist Program for automatic generation of the edist by ion block in the input file for
CASINO . Currently works only for antiferromagnetic Wigner crystals that have been generated
by the CRYSTAL program (since the numbers are generated from an analysis of gwfn.data).

• modify inputs : Simultaneously modify all input files in subdirectories off the current directory
(e.g. CASINO/examples) by adding or deleting keywords or by changing the value of a keyword.

• nstring : Generate integer number sequence from a to b step c. Useful for strings required in
jastrow.data files..

• plot corr : Plot calculated pair correlation function (ee/eh/hh) as calculated by CASINO and
dumped in a vmc.corr or dmc.corr file.

• plot jastrow : Convert functions defined in the old jasfun.data Jastrow factor file into a form
suitable for plotting by xmgr or whatever. With the new jastrow.data form this functionality
has been subsumed into CASINO itself (see the jastrow plot input keyword).

• plot hist : General program to read a vmc.hist/dmc.hist/dmc.hist2 files and plot selected
quantities as a function of move number.

• plot spline : Code to read an swfn.data file and plot selected states.

• plot vmc energy : Simple program to read a vmc.hist file and plot the total energy as a
function of move number.

• plot vmc hist : Simple utility to plot any of the records from a vmc.hist file as a function of
move number.

• pretty printer : mpr —pretty printing script for source code listings which saves trees (as-
suming a2ps has been set up correctly for your system).

• ptm : Manipulate pseudopotentials on radial grids or as Gaussian expansions.

• quad fit : Program for carrying out a quadratic fit to a set of data, so as to find a local
extremum. Can be used e.g. for graphing DMC (or VMC) energies against a parameter on
which they depend (e.g Gaussian exponent in orbitals of Wigner crystal).

• quickblock : Simple reblocking utility intended for analyzing very large dmc.hist files (since it
only looks at one column at a time). Alternative to reblock.

• reblock : Perform statistical analysis and reblocking of QMC data. Use this!

• rmstore : Remove old vmc.hist files produced with the -big option from $TMPDIR/STORE
on all machines in TCM (Cambridge interest only).

• simple qmc codes : Some very simple QMC codes freely available on the web for teaching
purposes.

• trimdmc : Trims dmc.hist and dmc.hist2 files to the end of the last complete block. This
is useful when restarting DMC runs that have been halted (e.g. by running out of time on a
parallel machine with a batch queue system).

• ve : Simple utility to extract energy, standard error and time taken from VMC standard output
file (single block runs only).

• wfn converters :

- GAUSSIAN9X/03 --> gwfn.data
- CRYSTAL9X/03 --> gwfn.data
- PW --> bwfn.data} (blips)
- PWSCF --> pwfn.data
- TURBOMOLE --> gwfn.data
- ABINIT --> pwfn.data
- CASTEP --> pwfn.data
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Utilities to read data from GAUSSIAN 9X/03, CRYSTAL9X/03, PWSCF, CASTEP, ABINIT
and TURBOMOLE calculations and convert to CASINO (x)wfn.data format.

• xwannier : Given real PW wave functions in a pwfn.data file this finds the Wannier centres
and if desired the Wannier functions of the specified orbitals.
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19 Appendix 1 : Old Jastrow factor file: jasfun.data

In Easter 2004, the new Jastrow factor jastrow.data described in Section 19 was introduced. It
was designed to replace an old unpublished form of Jastrow factor jasfun.data which had been used
in CASINO since 1999. The old Jastrow is now redundant, but CASINO still fully supports it for
purposes of backwards compatibility, hence it is documented here.

The jasfun.data file contains details of a Jastrow factor of the form described in Section 10.14.4.

JASTROW ! Header must be JASTROW
Silicon atom, s^2p^2 (ground) state ! Header not read
Non-linear rij term ! Header not read
A, L0, LC ! Header not read

0.44 0.0 0.0 ! A, L_0, of u_0 and cutoff
Enable optimization ! Header not read

F ! A not for optimization
L’ (a.u.) ! Header not read

0.0 ! L’ of S_1
Homogeneous rij term ! Header not read
No of parameters per spin ! Header not read

5 ! No of powers in S_1
Enable optimization ! Header not read

T ! For optimization
Parallel and antiparallel components present? ! Header not read

T ! S_1 same for // and anti//?
Spin parallel and antiparallel components ! Header not read
5.625899453763526E-004 1.122777200374748E-003 ! B’ of spin 1 and spin 2

-3.487554343373239E-004 -5.611467605982052E-004 ! alpha_1 of spin 1 and 2
9.941108935490427E-005 2.579395477618149E-004 ! alpha_2 of spin 1 and 2

-1.175244704897280E-004 -2.103573951529612E-004 ! alpha_3 of spin 1 and 2
2.542237859441641E-005 4.327076908591314E-005 ! alpha_4 of spin 1 and 2

No of sets of atom centred functions ! Header not read
1 ! Number of sets of atoms

SET 1 ! A set has same S_1-S_5
No of ions in set ! Header not read

1 ! Number of ions in set 1
Ions in set ! Header not read

1 ! Identifies ions in set 1
No of powers in ri,rirj,ririj(2),rirjrij(2) terms ! Header not read

5 0 0 0 0 0 ! No. of powers in S_2-S_5
L (a.u.) ! Header not read

0.0 ! L of S_2-S_5
ri dependent terms ! Header not read
Enable optimization ! Header not read

T ! For optimization
Enable spin polarization ! Header not read

F ! S_2 to depend on spin?
Components ! Header not read
8.773613686917481E-003 ! B of S_2

-1.810651282199839E-003 ! beta_1 of S_2
-1.410044958605923E-004 ! beta_2 of S_2
-7.466197634637714E-004 ! beta_3 of S_2
-5.119083682175356E-005 ! beta_4 of S_2
END SET 1 ! Denotes end of set 1
END JASTROW ! Denotes end of file

Notes:

1. The file is read by SUBROUTINE READ JASFUN.
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2. If the L0 parameter is set to zero, then it takes on a default value. For periodic cases the default
is 0.3LWS, where LWS is the shortest distance to the boundary of the Wigner-Seitz cell, so that
the Gaussian factor in Eq. 96 is small (1.5×10−5) at rij = LWS. The default L0 for a finite
system (atom or molecule) is just a very large number (1 × 1010) so the function is not ’cut
off’ at all. Note that any value given to the LC parameter other than zero will override the L0
setting.

3. LC is a parameter outside of which the u0 function of Eq. 96 is set to zero. If LC<0 then LC is
interpreted as the value of u0 below which it is set to zero, if LC=0 no cutoff is applied, and if
LC>0 then the value given is interpreted as the cutoff radius. LC gives a “hard” cutoff of u0,
whereas L0 is a “soft” cutoff. We normally choose LC to be zero and use L0 to apply a soft
cutoff.

4. If the L′ parameter is set to zero, then it takes on a default value. For periodic cases the default is
LWS i.e. the shortest distance to the boundary of the Wigner-Seitz cell. For molecular systems,
the default is ’the molecular size’, currently defined as the maximum interatomic distance times
1.25. For atoms, the default is 2.5.

5. if the L parameter in any of the sets of atom-centred functions is set to zero then it is given
a default value. The default is equal to the longest of the nearest neighbour distances for the
atoms in the set (CASINO will perform a neighbour analysis to work this out). For single atoms
which don’t have any neighbours, it is currently given the value of 2.0 .

6. Where functions are spin-dependent the first column (1) is for the spin parallel or spin up case,
and the second column (2) is for the antiparallel or spin down case.

7. For the “No of powers in ri,rirj,ririj(2),rirjrij(2) terms”, the ririj and rirjrij terms require two
integers for the l4 and m4 of Eq. 101 and the lm5 and nm5 of Eq. 102. At the moment only the
terms in S3 with l = m have been coded. The extra terms will be included in a later release.

Modifications for jellium slab system
The jellium slab, although homogeneous in the plane of the slab (x and y directions), is inhomogeneous
in the z direction. The introduction of the usual two-electron term in the Jastrow factor modifies the
density away from the desired z-dependence; a one-electron term, depending only on z, is required to
restore the correct form. This term is only available for ETYPE=6, and is introduced by including
the following lines in jasfun.data:

Enable one-body z-dependent term
T

Enable optimization
T

No of Fourier components present
2

Fourier components: frequencies and coefficients
0.930842267730309 0.335794237334347
2.79252680319093 -0.005315599024948

The lines belong at the end of the file (just before END JASTROW). The Jastrow factor will then
include a term

Jz = −
∑

k

C(k)sin(kz)
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20 Appendix 2 : Programming Guide for CASINO

You are not allowed to make modifications to CASINO without explicit written permission from the
Cambridge group. Should you be in such a position, please read the following.

20.1 STYLE

CASINO has a FORTRAN90 ‘style’ which should be adhered to when writing code either for the
main source or for utilities. This is because we think it is desirable that the package has a relatively
homogeneous look and feel. Everybody has their own style. Yours is different and may even be
better, but we’ve decided on one for CASINO and here it is. If you don’t write your code like this, the
likelihood is that somebody else will reformat it for you, and they will probably accidentally delete
a crucial minus sign while correcting your routine, an error which may take two weeks of your life
(which could be much better spent doing other things) to track down. You can get most of this just
by looking at the code, but let’s emphasize the main points:

• Don’t use more than 1 module per physical file, as Hitachi compilers won’t allow it!

• Capitalization outside of character context: Use upper case letters for keywords whose use
is primarily at compile time (statements that delimit program and subprogram boundaries,
declaration statements of variables). Use lower case letters for everything else, including the
bulk of run-time code. Description of routines to be enclosed in a little box with a description
of what it does and an author. Later changes to be documented at the bottom of this box. For
example:

SUBROUTINE rubbish
!-------------------------------------------------------------------------!
! Routine not to do anything at all. !
! !
! MDT 8.2000 !
! !
! Changes: !
! -------- !
! 3/2001 MDT - added capability to write ’Hello’ !
! 5/2001 MDT - added additional capability to write ’Everyday Spanish’ !
!-------------------------------------------------------------------------!
USE dsp
USE parallel
IMPLICIT NONE
INTEGER i,j,k,some_integer
REAL(dp) a
CHARACTER(llength)my_name

i=0
do j=1,10
write(6,*)’Hello’
do k=1,1000000
i=i+1
write(6,*)’Everyday Spanish’
enddo
enddo

etc..

END SUBROUTINE rubbish

• Contents of if, do and case blocks to be indented by one space.
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• In general don’t put spaces between words, e.g.,

if(something_is_true)a=b+c
not
if ( something_is_true ) a = b + c

• Use f90 versions of: .eq..ne. .lt. .le. etc.. i.e., ==, /-, <, <=

• Maximum of 80 characters per line. If you go over this, use & continuation characters at the
end of the line and at the beginning of the next one.

• Two blank lines between subroutines in a given physical file.

• Error conditions to be handled using the errstop and errwarn routines (in the utilities.f90 mod-
ule).

• Use ‘endif’ ‘enddo’ not ‘end if’ ‘end do’.

• No double colons in simple variable declarations e.g.

INTEGER ialloc
except where required e.g.
INTEGER,INTENT(in) :: n

• In lists of declared variables, adhere to the following order:

INTENTed dummy arguments first, order: in/inout/out

INTEGER,INTENT(in)
(INTEGER,ITENT(inout) etc..)
(INTEGER,INTENT(out) etc..)
REAL(dp),INTENT(in)
COMPLEX(dp),INTENT(in)
CHARACTER(12),INTENT(in)
LOGICAL,INTENT(in)

followed by things which are not arguments

INTEGER
REAL(dp)
COMPLEX(dp)
CHARACTER(12)
LOGICAL

Within each class, put standard variables on the first line, followed by things with attributes
like ALLOCATABLE, PARAMETER, etc., on subsequent lines, in whatever order seems aes-
thetically pleasing.

Note the CHARACTER(12), not CHARACTER*12, which is not in the Fortran90 standard.

• Don’t use tab characters anywhere in the code.

• All units for reading and writing to be allocated unit numbers using the standard ‘call open units’
procedure which you can figure out by looking at other examples in the source.

• Initial letter of comments to be in capitals. Comments to be spelled correctly. Comments to be
useful.
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! This is a legitimate comment

! this is an illegitimate comment X

! tihs one is evn more illetigimate as i cant spell. XX

! allocate variables XXX (really?)
allocate(a(1))

• If you add a module USE statement anywhere, don’t forget to change the dependency list in the
Makefile.

• module USE statements in alphabetical order, followed by USE ONLY’s, in alphabetical order

USE a
USE b
USE c
USE a1, ONLY : x
USE b1, ONLY : x
USE c1, ONLY : x

• Don’t use ‘return’ at the end of each routine - just use END SUBROUTINE or END FUNCTION
etc.

20.2 CONTENT

Important policy statement : Following advice from ABINIT chief developer Xavier Gonze, and
in order to reduce the workload on Mike and Neil, the policy of the Cambridge group regarding
inclusion of routines written for CASINO is now as follows. Such modifications will not be accepted
under any circumstances unless the modifications are made to the most recent version of the code
(email Mike when commencing the merge so that the ‘most recent version’ does not change too much
during this process).

The reason for adopting this policy is simply that merging complex code written by someone else
into a program as large and complex as CASINO is a very time-consuming procedure, and is prone
to introducing errors. This process can and has taken months with previous submissions.

Even if modifications are made to the latest version, you may find that they are still not incorporated
into the public release. If you want this to happen, there are a variety of ways to lower the energy
barrier for the inclusion of your routines. The general theme here is to try to reduce the amount
of effort that Mike has to perform to validate and check your code. If your submission includes lots
of things from the ’Good things’ list, and none at all from the ’Bad things’ list, then inclusion is
semi-automatic and will normally take place within days. We are aware that it requires a lot of work
to do the things on the Good list (so sulk about it) but we remind the reader that we will have to do
it if you don’t.

20.2.1 Good things

• Well written absolutely standard Fortran90 in the standard CASINO format. Do not use for-
tran95 (or later) constructs, or non-standard (but useful) extensions like ’flush’.

• The results of extensive testing of your routine with a range of examples, with before and after
numbers (including timings).

• A detailed description of whatever your code is supposed to do (I shouldn’t have to go through
each line of your code at the same detailed level you did, or I might as well have written it
myself.).
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• A bit of TeX for inclusion in the manual (if the code requires the user to know something over
and above what the current manual describes).

• Some example input/output which demonstrate the new capabilities that Mike can just run and
look at, without having to invent his own examples.

• Evidence of testing on both single-processor and parallel machines. Remember only the master
node should be writing to the output file. Also - CASINO is supposed to compile and work
on single-processor machines without an installed MPI library. Use the fake comms serial.f90
module supplied both in the utils directory and with the main code.

• You should not use any calls to external libraries apart from MPI. This includes BLAS, LA-
PACK, NAG etc..

• It uses the standard CASINO facilities for handling errors.

• The routine implements something that we desperately want or is in the TODO list.

20.2.2 Bad things

• We do not sacrifice speed for additional functionality. Think of another way to write it if it
slows the code down. It’s slow enough as it is.

• CASINO does not like to do things unless they are completely general. The development of
general complex electronic structure codes can be set back years by people choosing to implement
functionality which works only for their current project. Non-general algorithms tend to get
completely thrown away and re-implemented which wastes the time of both parties. It is not
usually much harder to write a general program than it is to write a specific one (we understand
this is not always true!).

• When writing to the output file, the new routines should not write out lots of weird arrays
(whose meaning is understood only by the author) in an incredibly scruffy format full of spelling
mistakes. In general, be as beautiful and informative as you can when writing to output, or
Mike will just have to make it so (which takes ages). If there are all sorts of special cases which
require different output, then so be it - select case and if blocks are very useful in this regard..

• Prior agreement for modification of the code was not obtained. Unsolicited submissions are not
accepted and can lead to moody lack of cooperation lasting years.

20.3 PERFORMANCE

CASINO prints a timing analysis at the end of the output file when it has finished a calculation.
This information can be useful to the programmer in deciding what optimizations to do to make the
program run faster.

The total time is divided into ‘User’ and ‘System’ time, the sum of which is printed as ‘CPU’ time.
These timings are broken down according to specific tasks, although by no means all activities are
timed - only those thought likely to contribute significantly. For very small systems such as atoms
a significant amount of CPU time will remain unaccounted for since the traditional heavyweight
tasks are very fast. For medium and large systems, often the calculation of the orbitals and their
derivatives will dominate, closely followed by Jastrow factors and Ewald interactions. In systems
with pseudopotentials, the non-local integration is very expensive indeed (since it calls the orbital
evaluation routine a lot) and this expense will increase the larger the non-local cutoff radius (lower
nlcutofftol in the input to see the effect of this).

The ‘User’ time is time spent executing the instructions that make up the user code, including e.g.
calls to subroutine libraries linked to the code.
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The ‘System’ time is time spent in kernel mode, processing I/O requests, for example, or other
situations which require the intervention of the operating system.

Together these comprise the total CPU time. Note that the User time is usually significantly greater
than the System time. Indeed, a high ratio of system to user CPU time may indicate a problem.
Exceptions such as page faults, misaligned memory references, and floating-point exceptions consume
a large amount of system time. Note that time spent doing things like waiting for input from the
terminal, seeking on a disk, or rewinding a tape does not appear in the CPU time; these situations
do not require the CPU and thus it can (and generally does) work on something else while waiting.

The elapsed (”wallclock” or ”real”) time is simply the total real time that passed during the execution
of the program. This will typically be greater than the total CPU time due primarily to sharing the
CPU with other programs. In addition, programs that perform a large number of I/O operations,
require more memory bandwidth than is available on the machine (i.e., the CPU spends significant
time waiting for data to arrive from memory), or is paged or swapped will show a relatively lower
ratio of CPU time used to elapsed time.

20.4 BUG REPORTS

We cannot of course guarantee that CASINO is free of bugs, and if you find one, please tell us. If you
don’t know what the problem is yourself, than please include as much detailed information you can
about the nature of the error in order to ensure a quick fix.

20.5 REQUESTS FOR NEW FEATURES

We are of course always happy to discuss such requests.
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